РУБРИКИ

Гигантская рябь течения

   РЕКЛАМА

Главная

Бухгалтерский учет и аудит

Военное дело

География

Геология гидрология и геодезия

Государство и право

Ботаника и сельское хоз-во

Биржевое дело

Биология

Безопасность жизнедеятельности

Банковское дело

Журналистика издательское дело

Иностранные языки и языкознание

История и исторические личности

Связь, приборы, радиоэлектроника

Краеведение и этнография

Кулинария и продукты питания

Культура и искусство

ПОДПИСАТЬСЯ

Рассылка E-mail

ПОИСК

Гигантская рябь течения

Наличие такой слоистости - характерная особенность строения паводковых дюн и антидюн. В.Р. Бейкер, обобщив материалы предыдущих исследователей и свои собственные, писал, что слоистость галечников, слагающих знаки ряби, всегда повторяет падение «подветренного» склона гряд, составляя в среднем около 20 при максимуме в 26-27. Для мелкой песчаной ряби этот факт отмечен во многих специальных работах.

Гигантские знаки ряби в долине Башкауса ниже устья р. Кубадру в 1982 г. впервые описал В.В. Бутвиловский. Их морфология и строение не отличаются от вышеописанных. Высота дилювиальных дюн варьирует от 1,5 до 8 м, длина ряби по простиранию - 25-30 м. Гряды сложены косослоистыми щебнистыми галечниками, почти не содержащими тонкого цемента. Пористость отложений в стенках канав достигает 20%. Для башкаусской ряби характерны наклонные горизонты мелких и средних валунников и дресвяно-галечниковые, чередование которых подчеркивает слоистость, согласную падению дистального слоя. Длинные оси обломков ориентированы по течению, а их наклон также согласен наклону прослоев.

Проксимальные склоны имеют падение 4-12, а дистальные - 15-35. Резкая асимметрия склонов подчеркивается характерным выпуклым профилем «китовой спины» у проксимальных склонов. На поверхности пологих склонов также часто залегают крупные слабо обработанные дилювиально-эрратические глыбы.

В целом на Алтае гигантская рябь известна во всех крупных долинах от предгорий до высокогорья. В.В. Бутвиловский закартировал несколько полей гигантских знаков ряби в бассейнах рр. Башкаус и Большой Улаган, а также упомянул, что обнаружил гигантскую рябь и в долине р. Чулышман выше пос. Коо. Общеизвестны поля гигантской ряби в предгорьях на правобережье р. Катунь в районе пос. Чуйский, на участке Платово-Подгорное, в районе пос. Элекманар, в Яломанской впадине, в Курайской впадине, в Чуйской котловине на правом берегу р. Чаган-Узун в «тени» высокого эрозионного останца и во многих других местах. Поэтому на рисунке показаны лишь основные местонахождения этого рельефа.

Не совсем понятным является отсутствие дилювиальных дюн в долинах бассейна Джазатера-Аргута. Одним из не очень, впрочем, удовлетворительных объяснений может служить их морфология - глубокие относительно узкие каналы, где рыхлые отложения уничтожались позднейшей, возможно - дилювиальной, эрозией. Другая возможная причина - малая изученность с дилювиальных позиций в связи с малой, относительно Катуни и Чуи, посещаемостью. Думается, что гигантские знаки ряби течения имеются в Самахинском расширении р. Джасатера.

Тувинские местонахождения

О верхнеенисейских полях гигантских знаков ряби сообщали еще в начале 1980-х годов М.Г. Гросвальд, Н.В. Лукина и Ю.П. Селиверстов. Позднее Б.А. Борисов и Е.А. Минина подробно описали все поля ребристого рельефа и диагностировали его как «рельеф ребристой морены», или «рельеф стиральной доски». Последнее может напоминать обсуждаемые образования, но лишь в том случае, если гофры стиральной доски закономерно асимметричны.

В 1987 году М.Г. Гросвальд впервые кратко описал грядовый рельеф на берегах верхнего Енисея как гигантскую рябь и представил его фотографию на 30-метровой террасе р. Ка-Хем выше Кызыла. М.Г. Гросвальд связал образование гигантских знаков ряби в долине Ка-Хема - Улуг-Хема с катастрофическими прорывами Дархатского ледниково-подпрудного озера. Позднее гигантские знаки ряби течения здесь описала Н.В. Лукина.

В 2002 г. долины Верхнего Енисея посетили участники полевой конференции комиссии INQUA GLOCOPH, в которой, в частности, принимали участие знатоки североамериканского скэбленда В.Р. Бейкер и Г. Комацу, а также палеогеографы, седиментологи и гидрологи из Австралии, Южной и Северной Америки, Великобритании и Европы. Этой конференцией, в которой участвовал и автор, руководил А.Ф. Ямских. Группа посетила все доступные поля гигантских знаков ряби по Ка-Хему - Улуг-Хему. В целом, тувинская рябь принципиально не отличается от таковой на Алтае и в Северной Америке и представляет собой следующее.

Дилювиальные дюны и разделяющие их ложбины имеют изогнутую и извилистую в плане форму. Профили паводковых дюн асимметричны, выпуклые дистальные склоны ориентированы вверх по долинам и имеют падение около 20, проксимальные склоны падают под углами 3-5. Длина гряд по простиранию изменяется от сотен метров до нескольких километров при ширине волны от 5 до 150 м. Высота волны у паводковых дюн в долине Улуг-Хема - до 10 м, обычно - около 5 м. Межгрядовые западины, как и на алтайской ряби, часто разделены перемычками, причем, как отмечает М.Г. Гросвальд грядовый рельеф местами нередко переходит в сетчато-ячеистый типа рыбьей чешуи, или в волнисто-грядовый. У денудационных останцов гряды круто изгибаются, как бы обтекая препятствия. На поверхности гряд в привершинной части обычны крупные, более 2 м в диаметре, глыбы долеритов и базальтов.

Гигантская рябь Верхнего Енисея почти везде подрезается рекой, что позволяет изучать ее строение. Она состоит из косослоистых хорошо окатанных мелковалунных галечников с дресвяно-щебнистым и крупнопесчаным заполнителем. Слоистость согласна дистальному склону. Порода рыхлая и сухая.

Как уже отмечалось, тувинские поля гигантской ряби течения уже много лет наблюдаются и анализируются с точки зрения палеогидрологической информативности. Однако, как ни странно, такого большого внимания, как на Алтае и в Америке, тувинская рябь к сожалению пока не привлекла.

Тем не менее, есть основания говорить о том, что гигантские знаки ряби распространены гораздо шире, чем это показано на пионерной схеме М.Г. Гросвальда. В частности, А.В. Мацера упоминает о широком распространении в Тоджинской котловине «сетчато-ячеистых озов», образование которых он связывает с распадом оледенения в котловине и циркуляцией талых вод среди массивов «мертвого льда». Вероятно, речь может идти о гигантских знаках ряби течения во впадине, что признал и сам автор в устном общении.

Главные общие диагностические признаки гигантских знаков ряби течения

1) Высота волны от 2 до 20 м при длине волны от 5-10 м до 300 м;

2) Знаки ряби вытянуты вкрест дилювиальным потокам. Они четко и закономерно асимметричны. Проксимальные склоны, ориентированные навстречу потоку, более пологие и имеют слабовыпуклые профили; дистальные склоны более крутые и имеют слабовогнутые профили в пригребневых частях;

3) К гребням и верхним частям склонов часто приурочены скопления крупных слабоокатанных валунов и глыб;

4) Гигантские знаки ряби состоят из галечниково-мелковалунных отложений с незначительным присутствием грубо- и крупнозернистых песков. Обломочные материал обладает диагонально-косой слоистостью, согласной падению дистального склона. Независимо от возраста гряд порода сухая и рыхлая, обломки не цементированы суглинистым и супесчаным материалом.

5) Поля гигантской ряби течения приурочены к путям стоков из котловинных ледниково-подпрудных озер и круговоротным зонам в расширениях каналов стока.

К сожалению, до сих пор не удалось выявить диагностических признаков литологии вещества гигантской ряби, отличавших бы их от других генетических типов рыхлых отложений в разрезах. Наличие косослоистых серий в некоторых толщах явно флювиального генезиса, которые В.В. Бутвиловский диагностирует как погребенную рябь, в природе выглядят не так замечательно, как это рисуется автором. Мне много лет приходилось работать на этом и других подобных разрезах. Кроме факта косого падения флювиальных валунных галечников ничто не говорит о том, что перед исследователем - погребенные гигантские знаки ряби. Это можно не более чем предполагать. А крутое падение слоистости русловых аллювиальных фаций - очень частое явление. По-видимому, проблема диагностики дилювиальных отложений в погребенном состоянии, то есть - без геоморфологического контроля, может быть решена не только и не столько на уровне текстурных особенностей дилювия, сколько на уровне микроскопического изучения литологии отложений гигантских знаков ряби, т.е. минералогии тонкой фракции, формы зерен, анализа акцессорий и т.д. и сравнения корректных обобщений этого материала с различными фациями современного горного аллювия на одноименных створах.

Такую работу пытался провести С.В. Парначев, но исследования привели его к неожиданному выводу - вещество дилювия ничем не отличается от вещества аллювия. С.П. Парначев был вынужден ввести новое понятие «дилювиальный аллювий». Это, конечно, невозможное сочетание, так как физические характеристики сред, в которых формируются аллювий и дилювий принципиально различны.

Поэтому на сегодняшний день можно констатировать, что главными диагностическими признаками гигантских знаков ряби течения являются их большие размеры, особенности морфологии и текстуры, и грубый состав слагающего их обломочного материала.

Механизм формирования гигантских знаков ряби течения принципиально подобен процессу образования мелкой песчаной ряби, который сейчас довольно подробно изучен. В нашей стране для мелкой песчаной ряби этот вопрос решался в искусственных желобах и на экспериментальных участках с песчаным ложем. В общем, было установлено, что высота и длина волны ряби увеличивается с увеличением глубины и скорости воды. Эта зависимость сложна, хотя в отдельных интервалах парных параметров гряд и потока может быть линейной: В = 4,2D, где В-длина волны, а D - глубина потока. Близкие взаимоотношения приводит и М.С. Ялин: В = 5D.

При некоторой критической глубине воды эта зависимость может меняться на обратную: чем глубже поток, тем ниже дюны, но, вероятно, больше длина волны.

Первая зависимость часто применяется для расчета гидравлических параметров русловых процессов в отечественной литературе, вторая - в западной.

Как отмечает Р.Б. Дайнхарт, правила Ялина вполне справедливы для малых гравийных форм ложа, но, исходя из приведенных формул, уже при стометровой длине паводковой дюны глубина потока должна быть 20 м. При глубинах потока в сотни метров, какие имели американские, алтайские и тувинские дилювиальные потоки, следовало бы ожидать совсем другую морфометрию русловых форм скэбленда. Следовательно, приведенные зависимости мало пригодны для гигантской ряби, генерированной высокоэнергетическими течениями.

Таблица 1. Морфометрия русловой ряби течения и гидравлические характеристики потоков в 4-х пунктах исследований К алтайскому разделу этой таблицы необходим комментарий. Над полем гигантской ряби течения, параметры которой указаны в таблице, в круговоротной зоне в Курайской впадине П.Э. Карлингом получены расходы потока в 750 000 м3/с. В таблице показаны гидравличесткие характеристики потока на стрежне. Цифры П.Э. Карлинга и наши получены разными методами и не противоречат друг другу, так как, в круговоротной зоне на спаде потопа все гидравлические параметры и должны быть меньше. Но и расчеты П.Э. Карлинга показывают, что правило М.С. Ялина для гигантской ряби не корректно, и Р.Б. Дайнхарт совершенно прав.

Район

р. Сев. Татл, Вашингтон

р. Медина, Техас

Колумбийское плато

Алтай

Источник

Dinehart, 1992

Baker and Kochel, 1988

Baker, 1973; Baker&, Nummedal, 1978

Baker, Benito Rudoy, 1993; Rudoy, Baker, 1993

Дата

Декабрь, 1989

Август, 1978

Плейстоцен

Плейстоцен

Длина волны, м

6-15

80

120

200

Высота волны, м

0.2

3

6

20

Глубина

потока, м

1,4

10

100

400-500

Средняя скорость течения, м/с

2.5

3.5

18

32.5

Напряжение сдвига ложа, н/м2

100

300

1800

до 20000

Мощность, вт/м2

250

1000

32000

до 1000000

Расход, м3

175

7000

10000000

свыше 18000000

Чередование гранулометрически разнородных слоев и горизонтов в строении паводковых дюн можно объяснить комбинацией механизмов периодического оползания крупнообломочного материала, накапливающегося в пригребневой части дистального слоя, флуктуацией потока и короткопериодическими изменениями гранулометрии влекомых наносов. П.Э. Карлинг полагает, что поскольку падение слоистости в паводковых дюнах близко к состоянию покоя, то гряды в русле перемещались в основном не обваливанием и оползанием, а перекатыванием подвижных слоев через изгиб в вершине гребней и отложением их на дистальном склоне.

Для роста ряби в условиях соответствующего потока требуется очень небольшие интервалы времени. Р.Б. Дайнхарт на примере рек северо-запада США установил, что при высоте гребней речных дюн в пределах 0,2 - 0, 4 м их длина увеличивается до 30 м за 1 - 2 суток. Т.К. Густавсон, все же можно предположить, что и формирование рельефа гигантской ряби течения в дилювиальных потоках происходило очень быстро.

Сейчас же пока можно сделать предварительный вывод о том, что гигантские знаки ряби течения являются русловыми формами, которые не могут быть сопоставлены непосредственно из наблюдений ни в современных ущельях и небольших разветвленных реках, ни в больших зрелых речных долинах.

Завершая этот раздел, отмечу, что в настоящее время ни в одной стране не разработана классификация гигантских знаков ряби течения подобная тем, которые имеются для мелкой речной ряби. Эта работа по генетическому разделению дилювиальных фаций еще впереди и, по-видимому, лежит в русле «потопной седиментологии» Пола Карлинга.

Определения

Гигантская рябь течения - это активные русловые формы рельефа высотой до 20 м, образованные в околотальвеговых участках пристрежневых частей магистральных долин дилювиального стока. В плане образуют серповидные или извилистые гряды длиной от первых метров до километров, разделенные мульдообразными понижениями с частыми перемычками. Гигантские знаки ряби течения состоят из косослоистых промытых гравийно-галечниковых отложений с участием окатанных валунов и глыб. Гигантские знаки ряби являются морфологическим и генетическим макроаналогом мелкой песчаной ряби течения. Гигантские знаки ряби течения имеют асимметричную в поперечном профиле форму «китовой спины», где более пологий слабовыпуклый к гребню склон обращен навстречу течению палеопотока, а более крутой, слабовогнутый в пригребневой части, склон, находится в зоне относительной русловой тени.

Гигантская рябь течения является важнейшим звеном группы аккумулятивных форм парагенетической ассоциации дилювиального морфолитокомплекса горных и равнинных скэблендов.

Скэбленд - это территории ледниковой и приледниковой зон, подвергающиеся или подвергавшиеся ранее многократному воздействию катастрофических паводков из ледниково-подпрудных озер, оставивших оригинальные эрозионные, эворзионные и аккумулятивные природные образования, по которым возможно определить гидравлические параметры водных потоков, реконструировать историю скэбленда и дать прогноз. Скэбленд - это площадь, рассеченная параллельными ложбинами, изобилующая каплевидными в плане холмами, водобойными котлами и следами кавитации; геоморфологический ландшафт, созданный гидросферной катастрофой.

Определения «скэбленда» возможно расширить в связи с марсианскими открытиями и в связи с разработкой геофизического эффекта подледных извержений вулканов. В этом аспекте происхождение скэблендов целесообразно связывать также и с внезапным таянием криосферы и катастрофическими прорывами вод под мерзлотой и между ее слоями как на Земле, так, в частности, и на планете Марс.

Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков

Палеогидрология

Только на территории Горного Алтая общая площадь ледниково-подпрудных озер, подсчитанная по высотному положению сохранившихся береговых линий, спиллвеев и кровле озерных отложений, составляла в позднем плейстоцене не менее 27 тыс. км2, а суммарный объем достигал 7, 3 тыс. км3. В целом же в горах Южной Сибири по предварительным оценкам эти параметры составляли, соответственно, 100 тыс. км2 и 60 тыс. км3.

Самыми крупными ледниково-подпрудными озерами из изученных были Чуйское и Курайское, которые на определенном этапе их эволюции, на стадиях деградации последнего оледенения, представляли собой единый Чуйско-Курайский ледниково-подпрудный водоем. Обнаруженные во время полевых работ 1984 г. на абсолютных отметках свыше 2400 м новые перевалы-спиллвеи из Курайской котловины в бассейн р. Чаган-Узуна и из Чуйской - в бассейн р. Башкауса, а также комплекс дилювиальных валов на перевале Кызыл-Джалык - Кызыл-Чин и Кызкынор, показали, что рекордные объемы Чуйско-Курайской системы ледниково-подпрудных озер могли достигать 3500 км3, т.е. были гораздо больше максимальных объемов оз. Миссула.

Характерные для горных систем Центральной Азии большие межгорные котловины, окруженные высокими хребтами, несущими мощное оледенение, в ледниковое время представляли собой систему сообщающихся водоприемников, сток из которых осуществлялся по крупнейшим дренажным системам, на Алтае - по долинам Чуи, Чулышмана, Башкауса, Катуни, Бии, и, вероятно, Джасатера-Аргута. Это установлено по комплексу дилювиальных образований в этих долинах, но главным образом - по местонахождениям рельефа гигантских знаков ряби течения.

В случае повышенной мощности ледниковых плотин в каналах стока регулирование запасов воды в водоприемниках происходило путем частичной водоотдачи через дренажные каналы низших порядков - перевальные седловины в соседние бассейны. Сброс части вод через спиллвеи Тобожок-Башкаус должен был вызывать катастрофическое опорожнение ледниково-подпрудных озер в долинах рр. Башкауса, Улаганов и Кубадру. Прорывы Чуйского, Курайского или Уймонских озер провоцировали сбросы воды из Яломанской впадины. Эта озерно-дренажная сеть была чрезвычайно динамичной. Каждый очередной сброс или всех озерных вод, или их излишков немедленно компенсировался интенсивным талым стоком с ледников горного обрамления.

Короткопериодические опорожнения и заполнения котловин накладывались на озерно-ледниковые макроритмы длительностью в десятки тысяч лет, на всех этапах эволюции озер за исключением тех промежутков времени, когда поверхность озер вовлекалась в область питания ледников и возникали наледные ледоемы и «пойманные озера». На начальных и конечных стадиях оледенений, когда ледниковые плотины были маломощными и неустойчивыми, опорожнения происходили за счет прорывов или всплывания плотин. В остальных случаях излишки воды сбрасывались через спиллвеи, а также поверх плотин, которые в итоге опять-таки прорывались.

В магистральных долинах стока из некоторых котловин имеются фрагменты отложений подпруживавших озера ледников. Эти морены приурочены к створам участков прорыва на разных гипсометрических уровнях каналов при выходе из котловин. Фрагменты морен встречаются и на бортах каналов стока ниже участков прорыва. Такие образования специально изучались автором в долине Чуи между Чуйской и Курайской впадинами, ниже Курайской впадины, на склонах в урочище Баротал, в долине р. Катуни ниже урочища Сок-Ярык, в долине р. Чулышмана, в долине р. Ванча в Горном Бадахшане и в других местах. В.В. Бутвиловский и Г.Г. Русанов изучали эти образования в бассейне р. Башкауса, а М.Г. Гросвальд - в большинстве ледниковых районов мира.

Противники теории дилювиального морфолитогенеза утверждают, что если бы ледниково-подпрудные озера сбрасывались катастрофически, то дилювиальные потоки эродировали бы весь рыхлый материал в нижележащих долинах.

Во-первых, иной, не катастрофический, сценарий разгрузки ледниково-подпрудных озер в настоящее время неизвестен. Во-вторых, многочисленные современные примеры в самых разных районах планеты показывают, что ледниково-подпрудные озера способны продуцировать катастрофические паводки и без полного уничтожения подпруживающих ледников и их фронтальных морен.

Очевидно, что и сбросы Чуйского, Курайского, Уймонского и других озер в направлении магистральных долин на стадиях последней дегляциации, когда озера уже не достигали максимальных объемов в связи с уменьшением талого стока и маломощностью плотин, происходили главным образом по внутри- и окололедниковым каналам и полостям, а также - по подледниковым спиллвеям. Полного уничтожения плотин на этих этапах не происходило.

Таким образом, например, было спущено в сентябре 1982 г. оз. Стрэндлайн на Аляске. Это озеро имело объем 7 108 м3. Скорости дилювиального потока были оценены авторами статьи в 14 м/с. После катастрофического сброса озера, которых длился 5 часов, внутриледниковые каналы стока оставались открытыми еще около года, после чего закрылись.

У. Мэтьюз сообщает о механизме катастрофического прорыва ледниково-подпрудного оз. Саммит в декабре 1965 г.. Это озеро было спущено по внутриледниковому туннелю правильно формы с максимальным диаметром 13,1 м и длиной почти 13 км. Максимальный расход воды составлял 3200 м3/с.

Ярким примером обсуждаемого механизма катастрофических сбросов ледниково-подпрудных озер является долина р. Ванч на Памире. Верховья этой долины буквально завалены протаивающим моренным материалом - реликтом многочисленных подвижек ледника Медвежий. В 3 - 4 км от устья р. Дустироз вниз по р. Ванч долину почти перегораживает хорошо сохранившийся конечно-моренный комплекс ледника Русского географического общества. Этот комплекс представляет собой, по существу, активный каменный глетчер, под моренным чехлом которого залегает интенсивно убывающий ледниковый лед. А ведь только в течение 20-го столетия Абдукагорское озеро прорывало ледниковую плотину не менее шести раз: в 1910, 1937, 1951, 1963, 1973 и в 1985 годах. Зато еще ниже ледника РГО по течению Ванча долина в прирусловой части оказалась практически полностью вычищена гляциальными прорывными паводками, которые генерировало Абдукагорское ледниково-подпрудное озеро. Здесь можно встретить почти весь известный геоморфологический набор следов дилювиальных потоков: подрезанные конусы выноса, выположенное днище самой долины, покрытое огромными, в несколько метров в диаметре, глыбами, маргинальные каналы дилювиальных стоков по коренным бортам долины, эворзионные впадины «сухих водопадов» и т.п.

При кульминации оледенений механизм подледниковых катастрофических сбросов озер становился, по-видимому, превалирующим, хотя сами сбросы происходили реже. В частности дилювиальные каналы сбросов и геоморфологические следы работы напорных подледниковых вод под позднеплейстоценовой ледниковой лопастью описываются для Южного Онтарио, провинций Альберта, Квебек и северо-западных территорий современной Канады. Формирование отдельных форм рельефа, происхождение которых связывалось ранее с приледниковым морфогенезом, Т. Бреннард и Дж. Шоу объясняют напряженными водно-эрозионными динамическими обстановками под ледниковыми щитами.

Сейчас разработаны математические модели нескольких механизмов истечения воды из ледниково-подпрудных озер и внутриледниковых полостей, рассматривающий широкий их спектр от медленного просачивания воды через трещины во льду и термоэрозии с дальнейшим прорывом до катастрофических взламываний, прорывов льда. С палеогляциологических позиций важно то, что приледниковые и внутриледниковые озера способны продуцировать катастрофические паводки без полного уничтожения подпруживающего ледника. С геоморфологических позиций важно то, что наличие моренного материала в каналах стока не опровергает вероятность катастрофических опорожнений озер.

Несколько лет назад, когда рельеф гигантской ряби течения в горах Южной Сибири уже многие исследователи перестали, наконец, именовать мореной и т.п., то есть когда гигантская рябь течения получила свое верное, дилювиальное, объяснение, некоторое недоумение естествоиспытателей вызывала необычная ориентировка гигантских дилювиальных гряд в Курайской межгорной впадине. Согласно этой ориентировке, направление четвертичных дилювиальных потоков из котловины было обратным современному направлению р. Чуи. Другими словами, огромные массы воды, как и писали об этом Г.Ф. Лунгерсгаузен и О.А. Раковец, изливались в сторону Монголии.

Палеогляциологические реконструкции П.А. Окишева, основанные на том, что последнее оледенение в горах Алтая возникло и существовало вследствие понижения среднелетних температур воздуха относительно современных примерно на 5 без увеличения относительно современного среднегодового количества осадков, показали, что талый сток с ледников Алтая был в 10 раз меньше современного, т.е. был настолько ничтожен, что поглощался «каналами и трещинами ледника, занимавшего долину Чуи» в максимум оледенения и не «обеспечивал» образования озера в Курайской, в частности, котловине. Другими словами, ледники как губка впитывали ту малую воду, которая была, и котловины с подпруженным ледниками же стоком оставались сухими.

Для оценки талого стока в максимум и постмаксимум последнего оледенения в бассейне крупнейшей на Алтае Чуйской котловины мы использовали данные самого П.А. Окишева о градиенте температур в эти периоды и предлагаемые им же величины депрессии снеговой линии. В разработке модели учитывались рекомендации М.Б. Дюргерова, В.Г. Ходакова и А.Н. Кренке. Погрешность полученных результатов, по-видимому, не превысила ошибки определения границ четвертичных ледников.

Наши расчеты показали, что объем современного ледникового стока в бассейне верхней Чуи составляет около 0,3 км3/год. В первую фазу позднечетвертичного оледенения он составлял в среднем около 8,5 км3/год. Это означает, что в ледниковый максимум вюрма, если принимать исходные данные П.А. Окишева, объем талого стока с ледников Алтая мог быть почти в 30 раз больше современного.

Отмечу при этом, что, во-первых, для расчетов принималась величина депрессии границы питания как минимум на 400 м меньшая, чем действительная для указанных хронологических срезов; во-вторых, отклонения среднелетних температур воздуха на эти временные интервалы по некоторым данным были гораздо больше. Наконец, в-третьих, утверждение П.А. Окишева о неизменности, или даже - аридности, климата в ледниковые эпохи на территории гор Центральной Азии представляется совсем не бесспорным.

Работы Е.В. Девяткина, В.Э. Мурзаевой, А.А. Свиточа, Е.М. Малаевой и многих других геологов содержат очень серьезные доказательства синхронности плювиальных обстановок с похолоданиями с одной стороны, и глубокой аридизацией климата Центральной Азии в межледниковья с другой.

«Именно после оледенения до крайности усилился аридный режим Центральной Азии…», писал еще в 1949 г. Э.М. Мурзаев. На основании геоморфологических данных этот великий знаток Азии отмечал «несомненно более влажный, нежели современный, климат ледникового времени. Наши материалы по «сухим долинам» северо-восточного склона хр. Сайлюгем подтверждают выводы перечисленных исследователей о гораздо большей увлажненности климата в эпоху по крайней мере последнего оледенения и о постледниковой, резко проявившейся в раннем голоцене, аридизации.

Поэтому можно полагать, что объем талого стока в бассейне верхней Чуи был еще больше, чем полученный по нашим расчетам из данных П.А. Окишева. Так или иначе, даже опираясь на приведенные, явно заниженные, оценки объема ледникового стока, легко подсчитать, что для заполнения Чуйской котловины до горизонтали 2200 м потребовалось бы, исходя из объема котловины, порядка всего ста лет. Курайская котловина должна была заполняться до этих отметок как минимум втрое быстрее. Поэтому до выравнивания уровней Курайского и Чуйского ледниково-подпрудных озер сток воды должен был быть направлен на восток, в бассейн заполнявшегося Чуйского озера.

Возможен еще один сценарий палеогидрологических событий, способный удовлетворительно объяснить «странную» ориентировку гигантской ряби в Курайской впадине. При изменении плановой конфигурации речного русла гидродинамический режим меняется, меняется и характер донной и боковой эрозии и прибрежной и иной аккумуляции наносов. Это контролируется дифференциацией скоростей течения на разных участках русла и изменением характера продольной и поперечной циркуляции воды в нем. В некоторых местах возникают зоны энергичных локальных водоворотов, а также более обширные пространства с обратными течениями. Именно на таких участках обратных течений, как показывают экспериментальные и натурные материалы, возникают грядовые русловые формы, не фиксирующие, кстати, - и это очень важно, участки максимальных скоростей и глубин основного потока.

В случае с Курайской впадиной палеогидрологическая ситуация, в частности могла выглядеть так, как показано на схеме. Можно добавить, что предложенное объяснение не является откровением для специалистов по русловым процессам, но может оказаться небезынтересным для специалистов в области динамической геологии и геоморфологии. Разумеется, оба сценария не исключают друг друга.

Реконструированный в Курайской впадине циклональный круговорот воды, имевший почти 10-километровый радиус, вместе с основным, продольным палеотечением мог бы служить зеркальной моделью современной циркуляции Арктического бассейна.

Гигантские знаки ряби течения, развитые в верхних истоках Енисея, позволяют наметить дилювиальную палеогляциогидрологию этой территории. Как видно из палеогляциологической схемы М.Г. Гросвальда, поля гигантской ряби расположены повсеместно по берегам Ка-Хема - Улуг-Хема. Образование этой ряби М.Г. Гросвальд связывает с катастрофическими прорывами Дархатского ледниково-подпрудного озера во время распада последнего оледенения.

Дархатская межгорная впадина ограничена с запада, севера и востока горными хребтами с абсолютными высотами около 3000 м, а на юге отделена от бассейна Мурэна водораздельной грядой с отметками около 2000 при высоте днища котловины - 1570 м. Абсолютная отметка уреза р. Кызыл-Хема у выхода из котловины - 1543 м. А.И. Спиркин, много работавший в бассейне Дархатской котловины, доказал неоднократное возникновение в котловине плотинных озер. Большинство плотин Дархатского озера были вулканического происхождения, следы последнего же озера указывают на его ледниково-подпрудный генезис. С выводами А.И. Спиркина согласились М.Г. Гросвальд и Н.В. Лукина.

Максимальная площадь Дархатского ледниково-подпрудного озера, восстановленная по гипсометрии озерных террас, составляла в последнюю ледниковую эпоху около 2600 км2, а объем воды превышал 250 км3. На основании сравнения величин испарения и средних годовых сумм атмосферных осадков в бассейне Дархатской впадины и современном речном бассейне, М.Г. Гросвальд делает вывод о том, что время, необходимое для заполнения озерной ванны до отметки 1720 м, составляло около 100 лет. После этого озеро прорывалось.

Этот сценарий очень похож на реконструированную поздневюрмскую историю алтайских ледниково-подпрудных озер. Даже порядок величин скорости заполнения межгорных впадин талыми водами одинаков - около ста лет. Можно предполагать, что этот порядок справедлив и для других ледниково-подпрудных озер Центральной Азии, если иметь в виду сходные климатические условия их питания и режима.

Систематические дилювиальные потоки из Дархатской впадины создали каньоны-кули в истоках Енисея, а также гигантские знаки ряби течения рр. Кызыл-Хема и Ка-Хема - Улуг-Хема. Кроме этого, согласно нашим наблюдениям, именно в результате работы дилювиальных потоков днища многих тувинских котловин почти полностью лишены обломочного рыхлого чехла. Обширный участок долины Енисея в районе Кызыла-Шагонара имеет лишенные рыхлых отложений склоны, и часто вычищенные от рыхлых осадков верхние террасовые цокольные уровни. Отложения гигантской ряби района Кызыла залегают, вероятно, на среднечетвертичном цоколе, который повсеместно обнажается рекой.

Как отмечалось, четвертичная гляциогидрология Саяно-Тувинского нагорья изучена лишь в самых общих чертах благодаря, в первую очередь, трудам М.Г. Гросвальда. Представляется удивительным пробелом то, что известная более двадцати лет тувинская гигантская рябь специально никем не изучалась, хотя даже по описанным местонахождениям можно судить о том, что по представительности она ничем не уступает алтайской и американской. Более того, если исходить из общей палеогляциологической ситуации территории нагорья и прилегающих прибайкальских регионов, ледниково-подпрудные озера существовали здесь повсеместно, и гигантская рябь течения может быть обнаружена во многих долинах. Нужно лишь представлять, что именно необходимо искать.

Расчеты гидравлических параметров дилювиальных потоков по морфометрии и вещественному составу гигантских знаков ряби и по топографии каналов стока

Первые определения расходов дилювиальных потоков позднечетвертичного североамериканского озера Миссула для различных участков производились по известной в гидрологии формуле Шези. Полученные результаты были грандиозны: от 2 до 10 млн. м3/с. Тем не менее, неопределенность коэффициента шероховатости русла приводила к значительным неточностям, а сами результаты казались многим сомнительными. Позднее В.Р. Бейкер на основании статистического анализа большого количества натурных данных вывел эмпирические зависимости между размерами гряд ряби течения и глубиной и скоростью потоков, в руслах которых эти гряды формировались:

Н = 0.923V 0.455; B = 37.8V 0.348 и B = 8.24D 0.87,

где Н - средняя высота волны ряби, В-средняя длина волны, D - глубина потока над полем ряби и V - средняя скорость течения воды.

В.Р. Бейкер определил и диапазон условий, в пределах которых справедливы эти взаимоотношения: глубина потока от 12 до 152 м, средняя скорость течения 9 - 18 м/с, крупность частиц, слагающих паводковые дюны - от гравия до валунов диаметров до 1.5 м и некоторые другие. Согласно зависимостям В.Р. Бейкера, для участка гигантской ряби Платово-Подгорное на 12 - 14-метровой левобережной террасе р. Катунь в предгорьях Алтая были получены средние скорости потока около 16 м/с, глубины потока около 60 м и расходы воды, с учетом современной морфологии долины, не менее 600 000 м3/с. Эти цифры несколько превышают ранее опубликованные в связи с уточнением морфометрии грядового рельефа методом крупномасштабной топографической съемки.

Участок Платово-Подгорное находится почти в 300 км от возможных мест прорыва. Поток здесь распластывался, его глубины и скорости падали. В горах скорости и глубины фладстримов были гораздо больше. Для поля дилювиальных дюн и антидюн на участке рр. Малый Яломан - Иня в Центральном Алтае, согласно зависимостям В.Р. Бейкера, были получены глубины потока более 400 м и скорости - около 30 м/с, а расходы, соответственно, - более 1 млн. м3/с. Полученные величины, как видим, не удовлетворяют условиям, для которых справедливы формулы В.Р. Бейкера, и требуют иных, независимых, подтверждений.

По расчетам П.Э. Карлинга, автора первых специальных работ по флювиальной геоморфологии и седиментологии грядового дилювиального рельефа на Алтае, обычные расходы дилювиальных потоков над местами образования ряби в Горном Алтае к моменту стабилизации фладстримов варьировали в интервале от 2?104 м3/с до 5?104 м3/с с максимумом на пике паводка в 750 000 м3/с. Максимальные глубины потока достигали 50 метров. Эти данные основаны на результатах компьютерной обработки множественных гранулометрических проб и крупномасштабной топографической съемки, произведенной на участках Платово - Подгорное, Малый Яломан - Иня и на полях развития рельефа гигантской ряби в Курайской впадине.

Недавно П.Э. Карлинг совместно с американскими планетологами обнаружил и предварительно проанализировал первое для Марса поле гигантских знаков ряби течения в системе каналов Атабска на Плато Цербера. Анализ марсианской гигантской ряби основывался на сравнении последней с курайской рябью на Алтае. В плане дилювиальные дюны и антидюны Атабаска напоминают барханоиды. Высота волны колеблется около 3,5 м при максимуме в около 5 м; длина волны достигает 130 м. Такая рябь, полагают авторы, откладывалась в русле потока с числом Фруда от 0, 5 до 0, 84 и с расходами около 2 106 м3/ с.

Как видим, расчеты П.Э. Карлинга не противоречат данным, полученным по формулам В.Р. Бейкера, хотя сам ход экспериментальных и аналитических работ, несомненно, более сложен. Следует еще раз подчеркнуть, что гидравлические параметры дилювиальных потоков над полями гигантских знаков ряби, в особенности - в зонах обратных течений, не отражают максимальные характеристики потока на стрежне, где скорости и глубины воды были гораздо больше.

Для оценки расходов дилювиальных потоков при прорывах приледниковых озер часто применяют эмпирические формулы Дж. Клейга и У. Мэтьюза, Дж. Бегета и Дж. Коста, в которых предполагается прямая связь между объемами сброшенных озер и расходами йокульлаупов на створах прорыва ледниковых плотин:

Qmax = 0.0075 V 0.667;

Qmax = 0.0065 V 0.69;

Qmax = 0.0113 V 0.06,

где Qmax - максимальные расходы йокульлаупов, а V - объем озера. Согласно этим формулам, плейстоценовая система Чуйско-Курайских ледниково-подпрудных озер продуцировала йокульлаупы с расходами от 4 до 9 ? 105 м3/с.

В настоящее время предпочтение отдается формуле, как более точной. В основе этой модели лежит уравнение регрессии, выведенное по результатам наблюдений десяти прорывов современных ледниково-подпрудных озер. Недостаток этой модели для целей четвертичной гляциогидрологии заключается в том, что: 1) она не учитывает топографию каналов прорыва и уже на некотором удалении от озерной ванны вниз по долине стока сильно занижает значение расходов воды; 2) зависимость выведена эмпирическим путем для современных приледниковых озер, размеры которых по крайней мере на два порядка меньше четвертичных. Тем не менее, при невозможности прямых измерений в дилювиальных потоках, я исхожу из того, что перечисленные зависимости представляют сходимые результаты, и на них можно ориентироваться при отсутствии альтернативных методов палеогидравлических расчетов.

По материалам полевых и картографических работ Алтайской российско-американской экспедиции 1991 г. были выполнены вычисления расходов дилювиальных потоков при прорыве всей Чуйско-Курайской системы четвертичных ледниково-продпрудных озер. В гидрологических расчетах профилей водной поверхности использовалась компьютерная программа НЕС-2. Ход вычислений основывался на решении уравнения удельной энергии, выведенного из уравнения Бернулли для установившегося, плавно изменяющегося течения. Основанием для вычислений были 17 поперечных профилей через долину р. Чуи, выбранных на участке длиной около 18 км приблизительно между «Золотаревской будкой» и пос. Чибит по «новой долине Чуи». Детальные геометрические данные канала стока по семи профилям были получены из топографических карт масштаба 1: 25 000.

Вычисленный нами максимальный расход для Чуйско-Курайского йокульлаупа оказался равен 18 ? 106 м3/с. Эта оценка превышает таковую для максимального расхода дилювиального потока из озера Миссула, который был оценен в 17 ? 106 м3/с. Сравнение расходов центрально-азиатских и североамериканских гляциальных суперпаводков представляется вполне корректным, так как для обоих регионов задача решалась по единой методике, а в полевых экспериментах участвовали одни и те же специалисты.

Материалы детальных полевых работ немецких исследователей в целом подтверждают наши данные. При своих вычислениях эти специалисты приняли объем Чуйско-Курайской озерной системы всего в 607 км3 и исходили при этом из абсолютных отметок береговых линий Чуйского и Курайского ледниково-подпрудных озер в 2100 м. Я оценил высоту озерных террас в 2200 м. Эта оценка производилась по привязке точек береговых линий на аэрофотоснимках и соответствующих точек на крупномасштабных картах. При этом суммарный объем воды должен был достигать не менее 1000 км3. Максимальные же объемы рассчитывались, как сказано, в первую очередь по абсолютным отметкам спиллвеев. Тем не менее, и при минимальных объемах озер Ю. Хергет с коллегами получили очень представительные результаты.

Они проанализировали 85-километровый участок долины р. Чуи до устья. Основанием для вычислений были 244 поперечных профиля, снятые с крупномасштабной топографической карты и с помощью GPS-системы на местности. Высоты поверхностей потоков принимались исходя из отметок береговых дилювиальных валов. Для обработки результатов была использована программа HEC-RAC - Hydrologic Engineering Center of the US Army Corps of Engineers - River Analysis System. По всем профилям были получены расходы потоков в интервале 8 106 м3/с - 12 106 м3/с. Глубины потоков варьировали от 280 до 400 м, а средние скорости течения на разных створах были 9 - 37 м/с. Число Фруда колебалось в соответствие с энергией потока от 0, 20 до 0, 85. Пик гидрографа стока на субкритическом участке показал расход воды в 20,5 106м3/с при скорости 72 м/с, что превышает и данные наших расчетов для Чуйско-Курайской системы озер, и данные для оз. Миссула.

Наличие потоков с такими расходами, предполагающими катастрофический прорыв, разламывание ледниковых плотин, не препятствует сценарию множественных фладстримов с расходами порядка 1 млн. м3/с, и связанных с повторяющимися заполнениями и опорожнениями ледниково-подпрудных озер. Более того, такие регулярные, «заурядные», потоки, которые все же были очень велики, могли оказывать на земную поверхность более сильное влияние благодаря не столько своей мощности, сколько систематичности, чем супермощные, феноменальные, но единичные йокульлаупы.

Высокие расходы и скорости суперпотоков определяли их способность производить огромную эрозионную и транспортирующую работу. Это следует из известных эмпирических формул, согласно которым твердый сток и интенсивность эрозии пропорциональны квадрату расхода русловых потоков и кубу их скорости. Строение скэбленда показывает, что геологическая работа, совершенная катастрофическими гляциальными суперпотоками, производилась поразительно быстро. Расчеты подтверждают, что для прохождения всего объема воды из Чуйско-Курайских озер через проанализированный участок потребовалось бы, на пике гидрографа, исходя из приведенных выше цифр, всего около 10 минут. Ю. Хергет получил величину продолжительности суперпаводка в долине р. Чуи в 2-3 дня.

Такие потоки имели чрезвычайно высокие напряжения сдвига ложа, описываемые в виде:

? = ? DS;

? = ? QS/W = ? V,

где ? - напряжение сдвига ложа; ? - удельный вес воды; S - уклон русла; Q - расход; V - средняя скорость течения воды; W - ширина потока. Комбинация этих факторов дает колоссальное давление на единицу площади ложа.

Согласно формулам и, при кульминациях фладстримов глубины дилювиальных потоков превышали 400 м, скорости варьировали от 20 до 45 м/с, а у Ю. Хергета - 72 м/с. Напряжения сдвига ложа составляли от 5000 н/м2 до 20000 н/м2, а мощность потока равнялась, соответственно, от 105 до 106 вт/м2.

А.Н. Костриков выполнил гидродинамическое моделирование для сверхмощных потоков, прорывавшихся из-под гигантского Арктического ледника. В качестве основы для разработки модели он использовал представления М.Г. Гросвальда о происхождении грядово-ложбинного комплекса Северной Евразии. Результаты моделирования представляют интерес и для понимания физической характеристики потопов, которые испытали в конце плейстоцена долины Горного Алтая, Тувы и территории Channeled Scabland в Северной Америке.

А.К. Костриков пишет, что при таких скоростях жидкость течет, практически не испытывая трения о ложе, двигаясь на кавитационной подушке из газовых пузырьков, возникающих вследствие уменьшения давления в жидкости ниже давления парообразования при обтекании неоднородностей подстилающей поверхности. На отдельных участках жидкость может представлять собой сложную смесь воды, льда, кавитационных пузырьков и взвеси, поднятой с подстилающей поверхности. При таких больших скоростях возможно и плавное уменьшение средней плотности «жидкости» с высотой вследствие образования волн, всплесков, пены и водной пыли. Таким образом, заключает А.Н. Костриков, поток мог не иметь «свободной поверхности» в традиционном понимании.

В лаборатории палеогидрологического и гидроклиматического анализа Аризонского университета было установлено, что для формирования главных черт рельефа изрезанных земель Колумбийского базальтового плато в Северной Америке при расходе паводка из озера Миссула в 17 млн. м3/с потребовалось не более 3 часов. Для совершения адекватной работы такой реке, как Миссисипи в ее половодном режиме, потребовалось бы, по крайней мере, 30 тысяч лет. Сравнение энергии четвертичных дилювиальных потоков Центральной Азии с потенциальной работой, например, Оби дадут результаты никак не менее впечатляющие.

Заключение

Современные реконструкции ледниковой палеогидрологии Алтая и Тувы начались с открытия и изучения рельефа и географии гигантских знаков ряби. Если другие формы скэбленда, особенно - в горах, могут иметь неоднозначную генетическую интерпретацию, то в совокупности с гигантской рябью они дают однозначный путь к реконструкциям: были крупные оледенения и были крупные ледниково-подпрудные озера. Были систематические и грандиозные их прорывы, в результате которых за часы-дни-недели кардинально менялась исходная топография. Гигантские знаки ряби течения, таким образом, - исключительное доказательство катастрофических прорывов ледниково-подпрудных озер и / или взрывного таяния криосферы.

Открытие и крупномасштабное картографирование новых местонахождений полей гигантских знаков ряби течения и других дилювиальных образований предоставит исследователю новый научный и методологический инструмент для реконструкции известной сегодня лишь в общих чертах грандиозной системы перигляциальных палеостоков всей Центральной и Северной Азии.

На территориях, где установлено четвертичное оледенение и приледниковые водоемы, должны быть обнаружены гигантские знаки ряби течения. На территориях, где обнаружены гигантские знаки ряби течения, должны быть обнаружены и следы четвертичных оледенений и ледниково-подпрудных озер.

Согласно реестру Американской геологической службы, позднечетвертичные алтайские дилювиальные потоки, открытые и реконструированные в первую очередь по гигантским знакам ряби течения, по своим гидравлическим характеристикам занимают первое место в мире, североамериканские миссульские - второе, и тувинские - третье.

Литература

1. Арнольд В.И. Теория катастроф. - М.: Наука, 1990. №2. 128 с.

2. Атлас снежно-ледовых ресурсов мира. - М.: РАН, 1997. Т.2. Кн. 2. 392 с.

3. Барышников Г.Я. Развитие рельефа переходных зон горных стран в кайнозое. - Томск: Томский ун-т, 1992. 182 с.

4. Барышников Г.Я., Платонова С.Г., В.П. Чичагов. Геоморфология гор и предгорий // Геоморфология, 2003. №1. С. 108-109.

5. Борисов Б.А., Минина Е.А. Ледниковые отложения Алтае-Саянской горной области. - Хронология плейстоцена и климатическая стратиграфия. Л.: Наука, 1973 С. 240-251.

6. Борисов Б.А., Минина Е.А. О гипотезе катастрофических гляциальных паводков на территории Алтае-Саянской области в свете геолого-геоморфологических данных // Всероссийское совещание «Главнейшие итоги в изучении четвертичного периода и основные направления исследований в ХХI веке». СПб, 1998. С. 90-91.

7. Бутвиловский В.В. О следах катастрофических сбросов ледниково-подпрудных озер Восточного Алтая // Эволюция речных систем Алтайского края и вопросы практики. - Барнаул, 1982. С. 12-17.

8. Бутвиловский В.В. Палеогеография последнего оледенения и голоцена Алтая: событийно-катастрофическая модель. - Томск: Томск. ун-т, 1993. 253 с.

9. Волков И.А., Зыкина В.С. Южная часть Западно-Сибирской равнины / Западная Сибирь // Развитие ландшафтов и климата Северной Евразии. - М.: Наука, 1993. Вып. 1. С. 32-35.

10. Геокриология СССР. Европейская территория СССР. - М.: Недра, 1988. 358 с.

11. Геокриология СССР. Средняя Сибирь. - М.: Недра, 1989. 414 с.

12. Гришанин К.В. Динамика русловых процессов. - Ленинград: Гидрометеоиздат, 1969. 166 с.

13. Гросвальд М.Г. Последнее оледенение Саяно-Тувинского нагорья: морфология, интенсивность питания, подпрудные озера // Взаимодействие оледенения с атмосферой и океаном / Ред. В.М. Котляков - М.: Наука, 1987. С. 152-170.

14. Гросвальд М.Г. Евразийские гидросферные катастрофы и оледенение Арктики. - М.: Научный мир, 1999, 120 с.

15. Гросвальд М.Г. Оледенение и вулканизм Саяно-Тувинского нагорья // Изв. РАН. Сер. географическая, 2003. №2. С. 83-92.

16. Гросвальд М.Г., Рудой А.Н. Ледниково-подпрудные озера в горах Сибири // Изв. РАН. Сер. географическая, 1996. №6. С. 112-126.

17. Девяткин Е.В. Кайнозойские отложения и новейшая тектоника Юго-Восточного Алтая // Тр. ГИН АН СССР, 1965. Вып. 126. 244 с.

18. Девяткин Е.В. Меридиональный анализ экосистем плейстоцена Азии  // Стратиграфия. Геологическая корреляция, 1993. Т. 1. №4. С. 77-83.

19. Девяткин Е.В., Малаева Е.М., Мурзаева В.Э., Шевкопляс В.Н. Плювиальные плейстоценовые бассейны Котловины Больших озер Западной Монголии // Изв. АН СССР. Сер. географическая, 1978. №5. С. 11-19.

20. Диких А.Н. Современное оледенение Центрального Тянь-Шаня и его роль в формировании стока р. Сары-Джаз // Проблемы освоения гор. - Фрунзе: Илим, 1982. С. 40-48.

21. Диких А.Н. Ледниковый сток рек Тянь-Шаня и его роль в формировании общего стока // Материалы гляциологических исследований, 1993. Вып. 77. С. 41-50.

22. Дюргеров М.Б. Изучение пространственно-статической структуры поля поверхностной абляции горного ледника // Материалы гляциологических исследований, 1976. Вып. 26. С. 140-144.

23. Дюргеров М.Б., Поповнин В.В. Реконструкция баланса массы, пространственного положения и жидкого стока ледника Джанкуат во второй половине XIX века // Материалы гляциологических исследований, 1981. Вып. 40. С. 73-81.

24. Знаменская Н.С. Грядовое движение наносов. - Ленинград: Гидрометеоиздат, 1968. 188 с.

25. Климанов В.А. Климат Северной Евразии в позднеледниковье  // Короткопериодические и резкие ландшафтно-климатические изменения за последние 15 000 лет / Ред. А.А. Величко. - М.: Наука, 1994. С. 61-94.

26. Кондратьев Н.Е., Попов И.В., Снищенко Б.Ф. Основы гидроморфологической теории руслового процесса. - Ленинград: Гидрометеоиздат, 1982. 272 с.

27. Костриков А.А. Геофизическая геодинамика сверхмощных потоков ледникового периода // Материалы гляциологических иследований, 2003. Вып. 95. С. 22-27.

28. Кренке А.Н. Массообмен в ледниковых системах на территории СССР. - Ленинград: Наука, 1986. Вып. 25. С. 99-125.

29. Лаврушин Ю.А. Строение и формирование основных морен материковых оледенений. - М.: Наука, 1976. 238 с.

30. Лунгерсгаузен Г.Ф., Раковец О.А. Некоторые новые данные о стратиграфии третичных отложений Горного Алтая // Тр. ВАГТ, 1958. Вып. 4. 1958. С. 79-91.

31. Лукина Н.В. История Дархатского палеоозера в свете корреляции событий плейстоцена Азии // Стратиграфия и корреляция четвертичных отложений Азии и Тихоокеанского региона / Ред. Г.И. Худяков. - М.: Наука, 1991. С. 85-90.

32. Мацера А.А. Рельефообразующая роль оледенения Восточного Саяна // Геоморфология, 1993. №. 3. С. 84-92.

33. Мурзаев Э.М. К палеогеографии Северной Гоби // Тр. Монгольской комиссии АН СССР. М.: Наука, 1949. Вып. 38. С. 29-40.

34. Новиков И.С., Парначев С.В. Морфотектоника позднечетвертичных озер в речных долинах и межгорных впадинах Юго-Восточного Алтая // Геология и геофизика, 2000. Т. 41. №2. С. 227-238.

35. Окишев П.А. Некоторые новые данные о древнем оледенении Алтая // Докл. Томского отдела ВГО. Л., 1970, с. 44-60.

36. Окишев П.А. Динамика оледенения Алтая в позднем плейстоцене и голоцене. - Томск: Томск. ун-т, 1982. 209 с.

37. Окишев П.А., Петкевич М.В. Горный Алтай. Рельеф Алтае-Саянской горной области. - Новосибирск: Наука, 1988. С. 6-39.

38. Оледенение Памиро-Алтая / Ред В.М. Котляков. - М.: Наука, 1993. 256 с.

39. Павлов А.П. Генетические типы материковых образований ледниковой и постледниковой эпох // Изв. Геологического комитета. СПб, 1888. Т. 7. №. 7. С. 1-20.

40. Панов В.Д. Эволюция современного оледенения Кавказа. - СПб.: Гидрометеоиздат, 1993. 432 с.

41. Парначев С.В. Геология высоких алтайских террас. - мск: Томск. политехн. ун-т, 1999, 137 с.

42. Патерсон У.С.Б. Физика ледников. - М.: Мир, 1984. 472 с.

43. Петкевич М.В. Физико-географические аспекты развития склоновых процессов в Центральном Алтае / Дисс… канд. географ. наук. Томск: Томск. ун-т, 1973. 180 с.

44. Поздняков А.В., Окишев П.А. Механизм формирования донных гряд и возможный генезис «гигантской ряби» Курайской котловины Алтая // Геоморфология, 2002. №1. С. 82-90.

45. Поздняков А.В., Хон А.В. О генезисе «гигантской ряби» в Курайской котловине Горного Алтая // Вест. Томск. ун-та, 2001. №274. С. 24-33.

46. Пушкарев В.Ф. Движение влекомых наносов // Труды ГГИ, 1948. Вып. 8. С. 93-109.

47. Разрез новейших отложений Алтая / Ред. К.К. Марков. - М.: Московский университет, 1978. 208 с.

48. Рейнек Г.-Э., Сингх И.Б. Обстановки терригенного осадконакопления. - М.: Недра, 1981. 439 с.

49. Рудой А.Н. К истории приледниковых озер Чуйской котловины. - Материалы гляциологических исследований. Хроника, обсуждения, 1981. Вып. 41. С. 213-218.

50. Рудой А.Н. Некоторые вопросы палеогеографический интерпретации литологии и особенностей распространения озерно-ледниковых отложений Горного Алтая // Гляциология Сибири, 1981. Томск: Томский ун-т. Вып. 1. С. 111-134.

51. Рудой А.Н. К диагностике годичных лент в озерно-ледниковых отложениях Горного Алтая // Изв. Всесоюзного географического общества, 1981. Т. 113. Вып. 4. С. 334-340.

52. Рудой А.Н. Гигантская рябь течения - доказательство катастрофических прорывов гляциальных озер Горного Алтая // Тр. конф. «Современные геоморфологические процессы на территории Алтайского края». - Бийск, 1984. С. 60-64.

53. Рудой А.Н. Дилювий: процесс, терминология, рельеф и отложения // Всесоюзное совещание «Четвертичная геология и первобытная археология Южной Сибири». - Улан-Удэ: Бурятский филиал СО АН СССР, 1986.

54. Рудой А.Н. Режим ледниково-подпрудных озер межгорных котловин Южной Сибири // Материалы гляциологических исследований, 1988. Вып. 61. С. 36-44.

55. Рудой А.Н. О возрасте тебелеров и времени окончательного исчезновения ледниково-подпрудных озер на Алтае // Изв. Всесоюзного географического общества, 1988. Т. 121. Вып. 4. С. 344-348.

56. Рудой А.Н. Концепция дилювиального морфолитогенеза. - Стратиграфия и корреляция четвертичных отложений Азии и Тихоокеанского региона / Тез. Межд. симп. Находка-Владивосток, 1988. Т.2. С. 131-132.

57. Рудой А.Н. Геоморфологический эффект и гидравлика позднеплейстоценовых йокульлаупов ледниково-подпрудных озер Южной Сибири // Геоморфология, 1995. Вып. 4. С. 61-76.

58. Рудой А.Н. Основы теории дилювиального морфолитогенеза // Известия Русского географического общества, 1997. Вып. 1. С. 12-22.

59. Рудой А.Н. О связи гляциальных и дилювиальных процессов рельефообразования // Изв. Русского географического общества, 1997б. Т. 129. Вып. 2. С. 13-21.

60. Рудой А.Н. Гидравлические характеристики и возможная геохронология четвертичных гляциальных суперпаводков на Алтае // Известия Русского географического общества. 2001. Т. 133. Вып. 5. С. 30-41.

61. Рудой А.Н. Четвертичные ледоемы Южной Сибири // Материалы гляциологических исследований, 2001. Вып. 90. С. 40-49

62. Рудой А.Н., Бейкер В.Р. Палеогидрология скейбленда Центральной Азии // Материалы гляциологических исследований, 1996. Вып. 80. С. 103-115.

63. Рудой А.Н., Галахов В.П., Данилин А.Л. Реконструкция ледникового стока верхней Чуи и питание ледниково-подпрудных озер в позднем плейстоцене // Изв. Всесоюзного географического общества, 1989. Т. 122. Вып. 2. С. 236-244.

64. Рудой А.Н., Карлинг П.А., Парначев С.В. О происхождении «странной» ориентировки гигантских знаков ряби в Курайской впадине на Алтае // В сб. «Проблемы геологии Сибири». - Томск: Томск. ун-т, 1994. С. 217-218.

65. Русанов Г.Г. О новых гипотезах происхождения грядового рельефа в Курайской котловине Горного Алтая // Природные ресурсы Горного Алтая. - Горно-Алтайск, 2004а. №2. С. 48-53.

66. Снищенко Б.Ф. О связи высоты песчаных гряд с параметрами речного потока и русла // Метеорология и гидрология, 1980. №6. 86-91.

67. Спиркин А.И. О древних озерах Дархатской котловины  // Геология мезозоя и кайнозоя Западной Монголии. - М.: Наука, 1970. С. 143-150.

68. Сперанский Б.Ф. Основные этапы кайнозойской истории Юго-Восточного Алтая // Вестн. Зап.-Сиб. геол. треста, 1937. №5. С. 50-66.

69. Тимофеев Д.А. Размышления о философии геоморфологии // Геоморфология, 2003. №4. С. 3-8.

70. Тимофеев Д.А., Втюрина Е.А. Терминология перигляциальной геоморфологии. - М.: Наука, 1983. 232 с.

71. Ходаков В.Г. Водно-ледниковый баланс районов современного и древнего оледенения СССР. - М.: Наука, 1978. 194 с.

72. Чистяков А.А. Горный аллювий. - М.: Недра, 1978. 278 с.

73. Allen I.R.L. Asymmetrical ripple marks and the origin of water laid cosete of cross-strata // Liverpool-Manchester Geol. J., 1963. №3. P. 187-236.

74. Arkhipov S.A., Ehlers J., Johnson R.G., Wright H.E. Jr. Glacial drainage towards the Mediterranean during the Middle and Late Pleistocene // Boreas, 1995. Vol. 24. P. 196-206.

75. Baker V.R. Paleohydrology and sedimentology of Lake Missoula Flooding in Eastern Washington // Gel. Soc. Am. Spec. Pap., 1972. V. 6. 79 p.

76. Baker V.R., Benito G., Rudoy A.N. Palaeohydrology of late Pleistocene Superflooding, Altay Mountains, Siberia // Science. 1993. Vol. 259. Р. 348-351.

77. Baker V.R., Bunker R.S. Cataclysmic Late Pleistocene Flooding from Glacial Lake Missoula: a Review // Quaternary Sc. Rev., 1985. Vol. 4. P. 1-41.

78. Baker V.R., Greely R., Comar P.D. et al. The Columbia and Snake river plains, Chapter 11. Geomorphic Systems of North Americs // Geol. Soc. Of Am., 1987. Vol. 2. P. 403-468.

79. Baker V.R., Nummedal D. The Channeled Scabland. - NASA, Wash., D.C., 1978. 186 p.

80. Beget J.E. Comment on «Outburst floods frpm glacial Lake Missoula» by G.K.C. Clark, W.H. Mathews and R.T. Pack // Quaternary Res., 1986. Vol. 25. P. 136-138.

81. Brennard T.A., Shaw John. Tunnel channels and associated landforms, south-central Ontario: their implications for ice-sheet hydrology // Canadian J. Earth Sc., 1994. Vol. 31. №3. P. 505-521.

82. Bretz J.H. The Channeled Scabland of the Columbia Plateau // Geol. Soc. Am. Bull., 1923. V. 31. p. 617-649.

83. Bretz J.H. The Spocan beyond the Channeled Scabland. // J. Geol, 1925. V. 33. P. 97-115.

84. Bretz J.H., Smith H.T., U., Neff G.E. Channeled Scabland of Washington; new data and interpretations // Geol. Soc. America Bull., 1956. V. 67. P. 957-1049.

85. Brennard T.A., Shaw John. Tunnel channels and associated landforms, south-central Ontario: their implications for ice-sheet hydrology // Can. J. Earth Sc., 1994. Vol. 31. №3. P. 505-521.

86. Brunner G.W. HEC-RAS River Analysis System - User's manual, version 3.0 / Hydraulic referece manual. Davis.

87. Buckland W. Reliquiae Diluvianae. - London: Murray, 1823. 311 p.

88. Burr D.M., Carling P.A., Beyer R.A., Lancaster N. Flood-formed dunes in Athabasca Valles, Mars: morphology, modeling and implications // Icarus, 2004. In Press.

89. Carling P.A. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia // Sedimentology, 1996. V. 43. P. 647-664.

90. Carling P.A. A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia / Branson J., Brown A.G., Gregory K.J.. Global Continental Changes: the Context of Palaeohydrology // Geol. Soc. Spec. Publ., 1996. №115. P. 165-179.

91. Carling P.A., Kirkbride A.D., Parnachov S.P et al. Late Quaternary catastrophic flooding in the Altai Moutains of south-central Siberia: a Synoptic overview and an introduction to the flood deposit sedimentology / Eds. P.I. Martini, V.R. Baker, G. Garson. - In: Flood and megaflood processes and deposits: resend and ancient examples // Int. Ass. of Sedimentologists. Oxford, England, 2002. Spec. Publ. 32. P. 17-35.

92. Chambers R.L. Sedimentation in glacial Lake Missoula // M.S. Thesis. Un. Montana, 1978.

93. Clague J.J., Mathews W.H. The Magnitude of Jokulhlaups // J. Glacilogy, 1873. Vol. 13. P. 501-504.

94. Costa J.E. Floods from dam failures // Flood geomorphology. - N.Y.: John Wiley & Sons, 1988. P. 439-463.

95. Costello W.R., Southard J.B. Flume experiments on lower-flow-regime bed forms in coarse sand // J. Sedimentary Petrology, 1981. №51. P. 849-864.

96. Dinehart R.L. Evolution of coars gravel bed forms: Field measurement at flood stage // Water Resour., 1992, V. 28. P. 2667-2689.

97. Feldman A.D. HEC Models for Water Resources System Simulation: Theory and Experience // Advances in Hydrosciences. - N.Y., 1981. P. 297-423.

98. Flint R.F. Origin of the Cheney Palouse scabland tract // Geol. Soc. of Am. Bull., 1938. V. 49. P. 461-524.

99. Friend D.A. Glacial Outburst floods of the Kinnicott Glacier, Alaska: a flood hazard assessment // 27 Int. Geogr. Congr., Wash., D.S., Aug. 9-14, 1992. P. 195-196.

100. Gilbert G.K. The transportation of debris by running water // U.S. Geol. Survey, Prof. Pap., 1914. 263 p.

101. Jackson R.G. Hierarchical attributes and a unifying model of bedforms composed of cohesion less material and produced by shearing flow // Geol. Soc. America Bull., 1975. V. 86. P 1523-1533.

102. Herget, J. Reconstruction of Ice-Dammed Lake Outburst Floods in the Altai-Mountains, Siberia - A Reviev // Geol. Soc. India, 2004. Vol. 64. P. 561-574.

103. Herget J.& Agatz H. Modelling ice-dammed lake outburst floods in the Altai Mountains with HEC-RAS. - V.R. Thorndycraft, G. Benito, M. Barriendos and M.S. Llasat 2003. Palaeofloods, Historical Floods and Climate Variability: Application in Flood Risk Assesment,.

104. Huggett R.J. Fundamentals of Geomorphology. - Routledge: London & New York, 2003, 386 p.

105. Malinverno A., Ryan W.B.F., Auffret G. & Pautot G. Sonar images of the Part of recent failure events on the continental margin off Nice, France - In: H.E. Clifton. Sedimentologic Consequences of Convulsive Geologic Events // Geol. Soc. Am. Spec. Pap., 1988. V. 229. P. 59-75.

106. Mathews W.H. Record of two jokulhlaups // Symp. On the Hydrology of Glaciers. Cambridge, 7-13 Sept. 1969. - 1973. P. 99-110.

107. Middleton G.V., Southard J.B. Mechanics of Sediment Movement // Soc. of Economic Paleontologists and Mineralogists. Tulsa, Okla., 1984. 401 p.

108. Nye J.F. Water flow in glaciers: jokulhlaups, tunnels and veins // J. Glaciology, 1976. Vo. 17. №76. P. 181-207.

109. O'Connor J.E., Baker V.R. Magnitudes and implications of peak discharges from glacial Lake Missoula // Geol. Soc. Am. Bull., 1992. Vol. 104. P. 267-279.

110. O'Connor J., Costa J. The World's largest floods, past and present: their causes and magnitudes / Circ. 1254. U.S. Geol. Survey, 2004. 13 p.

111. Pardee J.T. The glacial Lake Missoula, Montana // J. Geol., 1910. V. 18. P. 376-386.

112. Pardee J.T. Unusual currents in glacial Lake Missoula, Montana // Geol. Soc. Am. Bull., 1942. V. 53. P. 1569-1600.

113. Rudoy A.N. Fundamentals of the Theory of diluvial Morpholithogenesis / Abstr.13th INQUA Congr. Beijing, 1991. P. 131-132.

114. Rudoy A.N. Mountain Ice-Dammed Lakes of Southern Siberia and their Influence on the Development and Regime of the Runoff Systems of North Asia in the Late Pleistocene. Chapter 16. - Palaeohydrology and Environmental Change / Eds: G. Benito, V.R. Baker, K.J. Gregory. Chichester: John Wiley & Sons Ltd., 1998. 353 p.

115. Rudoy A.N. Glacier-Dammed Lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains // Quaternary International, 2002. Vol. 87/1. P. 119-140.

116. Rudoy A.N., Baker V.R. Sedimentary Effects of cataclysmic late Pleistocene glacial Flooding, Altai Mountains, Siberia // Sedimentary Geology, 1993. Vol. 85. №1-4. Р. 53-62.

117. Shaw John. The meltwater hypothesis for subglacial bedforms // Quaternary International, 2002. Vol. 1. Iss. 1. P. 5-22.

118. Sturm M., Benson C.A. History of Jokulhlaups from Strandline Lake, Alaska, U.S.A. // J. Glaciology, 1985. Vol. 31. №109. P. 272-280.

119. The U.S. Army Corps of Engineers HEC-2 Water Surface Profiles Computer Programm // U.S. Army Corps of Engineers, Davis, CA, 1985.

120. Thorson R.M. Late Quaternary paleofloods along the Porcupine River, Alaska: Implications for the regional correlation // U.S. Geol. Survey Circ., 1989. №1026. P. 51-54.

121. Waitt R.B.J. About forty last-glacial Lake Missoula Jokulhlaups through southern Washington // Geology, 1980. Vol. 88. P. 653-679.

122. Waitt R.B.J. Tens of successive colossal Missoula floods at north and east margin of Channeled Scabland // U.S. Geol. Survey Open-File Report, 1983. P. 83-671.

123. Waitt R.B.J., Thorson R.M. The Cordillerean Ice Sheet in Washington, Idaho and Montana // Late Quaternary of the United States, 1983. Vol. 1. P. 53-70.

124. Yalin M.S. Mechanisms of sediment transport. - London: Pergamon, 1972. 292 p.

Страницы: 1, 2


© 2007
Полное или частичном использовании материалов
запрещено.