РУБРИКИ

Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел

   РЕКЛАМА

Главная

Бухгалтерский учет и аудит

Военное дело

География

Геология гидрология и геодезия

Государство и право

Ботаника и сельское хоз-во

Биржевое дело

Биология

Безопасность жизнедеятельности

Банковское дело

Журналистика издательское дело

Иностранные языки и языкознание

История и исторические личности

Связь, приборы, радиоэлектроника

Краеведение и этнография

Кулинария и продукты питания

Культура и искусство

ПОДПИСАТЬСЯ

Рассылка E-mail

ПОИСК

Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел

(х - p)2 + Q (х -- р) (y - g) + P(y -- q)2 = 0,

а затем дает соответствующие формы уравнений для тройной и четырехкратной точек.

Вслед за тем Эйлер несколько подробнее и оригинально изложил учение о кривизне линий. Прежде всего он определил для кривой аппроксимирующую ее в окрестности данной точки параболу и нашел для последней круг кривизны. Для уравнения

0 = At + Bu + Ctt + Dtu + Euu + Ft3 + Gttu + Htuu + и т. д.

Эйлер получает, что длина радиуса кривизны в начале координат равна

Анализируя это выражение, он пришел к точкам перегиба первого и высшего порядков, для чего привлекались еще члены третьей степени. Аналогично рассматривались лежащие в начале координат точки заострения первого и высших порядков. В качестве общей формы, заключающей все эти возможности, он взял аппроксимирующие кривые с уравнениями бrm = sn. В плане подобных рассмотрений точки заострения второго рода, разумеется, не встречались, однако с помощью удачно выбранного примера Эйлер доказал, что такие точки действительно существуют. Ближайшие две главы книги Эйлера трактовали о кривых, имеющих диаметры, и об определении кривых, ординаты которых обладают данными свойствами. В последнем случае Эйлер имел в виду следующее. Пусть, например, уравнение кривой дано в виде

yy - Py + Q = 0,

где Р и Q -- функции х, и ординаты, соответствующие одному и тому же значению х, суть РМ и PN. Тогда можно принять, например, что

PMn + PNn=an

(п может быть также отрицательным или дробным). Аналогично обстоит дело с кривыми, уравнение которых имеет вид

y3 - Py2 + Qy - R = 0.

В следующей главе Эйлер определял кривые по другим условиям. Однако и эти условия носили весьма ограничительный характер и относились только к свойствам отрезков, отсекаемых на лучах, выходящих из начала координат. Вначале Эйлер устанавливает общие уравнения алгебраических кривых, имеющих с таким лучом лишь одну, две или три точки пересечения. Попутно Эйлер употребляет полярные координаты, полагая луч СМ = z, а угол его наклона к оси Ох обозначая через ц, так что

х = z cos ц, у = z sin ц.

Затем он берет условия типа CM ± CN = const., = const., = const, и некоторые другие и исследует соответствующие классы кривых. Сходным образом поступает он и в случае трех точек пересечения.

Специальную главу Эйлер посвятил подобию и аффинности кривых. Он повторил сделанное уже ранее указание, что однородное относительно х и у уравнение представляет только систему («aliquot») прямых, пересекающихся в одной точке. Если же уравнение оказывается однородным при введении «параметра» и, то все представляемые им кривые являются подобными. Эйлер приводит для примера уравнение

у3 -- 2 х3 + a y y -- a a x + 2 a a y = 0

и доказывает, что если координаты точек другой кривой системы обозначить X и Y, то всегда будет

и .

«Аффинными» Эйлер назвал кривые, координаты которых связаны уравнениями

и .

Это определение совпадает с современным понятием аффинности. Затем Эйлер привел еще несколько примеров на составление систем кривых с одним переменным параметром.

Интересно, что в свою книгу Эйлер включил также главу о трансцендентных кривых. Он кратко рассмотрел тригонометрические кривые, логарифмическую кривую, циклоиду, эпициклоиды и гипоциклоиды, линию х у = у х и спирали. Для спиралей он вновь применил полярные координаты, обозначая полярный угол, измеряемый в радианах, через s, а полярный радиус-вектор, как и раньше, через z. Ни здесь, ни где-либо в другом месте этого тома дифференциальное исчисление не применялось. [11]

Надо обратить внимание, что дидактические достоинства второго тома «Введения» велики. Изложение отличается отчетливостью и доступностью, систематизация материала вполне естественная. Для того времени это «научный трактат» и в то же время хороший учебник. Впервые аналитическая геометрия была столь полно и последовательно изложена. Отныне ей было обеспечено самостоятельное место среди других математических дисциплин. [6]

§3.4. Специальные плоские кривые

Еще долго до того, как возникла общая теория конических сечений, был изобретен ряд отдельных кривых для построения античных задач.

«Треугольные кривые» возникли в одной оптической задаче, поставленной Эйлером [Act. Ac. Petr., 1778, II (1781). Эвольвенты этих кривых он называл «круговидными» (Orbiformen).

Кривым с несколькими осями симметрии посвятил XV главу второго тома своего «Введения» (1748) Эйлер.

Кривыми, длины дуг которых представляют собой некоторые определенные функции, несколько раз занимались Эйлер [Nov. Act. Petr., 1789 (представлено 1776), Mem. Ac. St.-Pet, 1830 (представлено 1781)] и Н. Фус (Nov. Act. Petr., 1805).

На «псевдоциклоиды» (термин Э. Чезаро, 1896), т. е. эпициклоиды с мнимым образующим кругом, натолкнулся еще Эйлер в поисках кривых, подобных своим эволютам различных порядков [Comm. Ac. Petr., 1740 (1750) и Nov. Act. Petr., 1783 (1787)].

«Упругую кривую», т. е. линию, форму которой принимает закрепленный на одном конце упругий стержень, Галилей как это указывает Як. Бернулли (Acta Erud., 1694), также считал параболой. Геометрическую характеристику этой кривой дал Я. Бернулли (Acta Erud., 1694 и 1695). Особенно подробно занялся ею Эйлер в приложении 1 к «Методу нахождения кривых линий» (1744, ср. стр. 202) и в Acta. Ac. Petr., 1782, II (1786).[11]

§3.5. Геодезические линии

Первые дифференциально-геометрические исследования относились к кратчайшим линиям на поверхностях. В самом деле, именно при изучении геодезических линий Иоганн Бернулли в 1697, по-видимому, впервые, применил исчисление бесконечно малых. Изложение своего метода он составил лишь в 1728, а опубликовал его в 1742 (Opera, т. IV; ср. стр. 201--202). Как известно из одного его письма к Эйлеру от 18 апреля 1729, дифференциальное уравнение, полученное Бернулли, имело вид

где Т обозначает подкасательную и ds2 = dx2 + dy2. В одной схолии сам Бернулли показал, что это дифференциальное уравнение легко преобразовать к форме, которая содержится в опубликованной тем временем Эйлером статье в Соmm. Ac. Petr., 1728 (1732). Бернулли опирался на теорему, полученную, впрочем, из механических соображений, что соприкасающаяся плоскость геодезической линии («planum osculans») должна быть перпендикулярна к касательной плоскости поверхности (письмо к Лейбницу, август 1698).

Бернулли добавил, что в случае поверхностей вращения задачу можно также решить, требуя, чтобы при развертывании узкой полосы поверхности, содержащей геодезическую линию, на плоскость эта линия переходила в прямую. Для конуса это замечание было сделано Як. Бернулли уже в Acta Erud., 1698.

Эйлер решил задачу в указанной статье, исходя из высказанного еще в 1697 Як. Бернулли положения, что минимальное свойство всей кривой должно быть присуще и ее мельчайшим частям, а также применяя теорию максимумов и минимумов.

У Эйлера дифференциальное уравнение геодезической линии имело вид

,

где функции Р, Q берутся из дифференциального уравнения поверхности

Pdx = Qdy + Rdt. Эйлер затем подробнее разобрал частные случаи общего цилиндра и конуса, а также поверхностей вращения. Для этих случаев он привел дифференциальное уравнение к уравнению первого порядка, а в заключение указал некоторые обобщения. Эйлер не забыл отметить, что при развертывании поверхностей цилиндра или конуса на плоскость их геодезические линии должны перейти в прямые.

Лейбниц также весьма интересовался этим вопросом, но он лишь указал (в переписке с И. Бернулли, 1698) способ, который мог бы также привести к составлению дифференциального уравнения. Прием, указываемый Лейбницем, совпадал с тем, которым воспользовался для решения задачи молодой Клеро в Mem. Ac. Paris, 1733 (1735).

Существенный шаг вперед сделал здесь опять-таки Эйлер в IV главе второго тома «Механики» (1736), где доказал, что точка, движущаяся по поверхности без ускорения, всегда описывает геодезическую линию. При этом у него получилось механическое доказательство теоремы, из которой исходил Бернулли (аналитическое доказательство дал впервые Лагранж в 1806).

Более простой вопрос о геодезических кривых на поверхностях вращения геометрически разрешил, как было отмечено, Як. Бернулли (Acta Erud., 1698). Клеро затем доказал, что для точек такой линии произведение радиуса параллельного круга на синус ее угла с меридианом постоянно [Mem. Ac. Paris, 1733 (1735)]; с помощью разложений в ряды он приближенно определил геодезические линии эллипсоида вращения, мало отличающегося от шара [там же, 1739 (1740)].

Эйлер, побуждаемый Иоганном Бернулли, обобщил задачу о геодезических линиях на кривые, соприкасающаяся плоскость которых образует с касательной плоскостью к поверхности угол, отличный от прямого (письмо к Бернулли от 11 июля 1730, опубликовано в 1903 г.). Эту задачу решил и Бернулли (Opera, IV, 1742). [11]

§3.6. Общие пространственные кривые и развертывающиеся поверхности

Применение дифференциальных операций к более общим пространственным образам, как и вообще их аналитическое изучение, последовало сравнительно поздно. В «Исследованиях» Клеро (1731), кроме подкасательной пространственной кривой, встречается лишь формула ds=. Какой-либо прогресс в этом отношении не наблюдается вплоть до выхода двух статей Эйлера о пространственных кривых, последовавших одна за другой в Act. Ac. Petr., 1782, I (1786). Поэтому две указанные работы следует считать в данной области основоположными. Чтобы не выделять особо какую-либо из осей координат, Эйлер сразу выбирает в качестве независимой переменной длину дуги s, полагая

dx = p ds, dy = q ds и dz = r ds.

Затем он описал вокруг точки кривой Z шар единичного радиуса, на который, как сказали бы мы, сферически отобразил окрестность точки кривой вместе с прямыми, проходящими через нее параллельно осям, и т. д.; прием этот вел свое происхождение из астрономии.

Далее, Эйлер применил формулы сферической тригонометрии, добавив, однако (в Dissertatio altera -- «Другое рассуждение»), для тех, кого не может удовлетворить этот «чужеродный принцип», совершенно иной вывод, отправлявшийся от соприкасающейся плоскости. Полученные результаты сам Эйлер резюмировал в заключении следующим образом. Если взять прямоугольный параллелепипед со сторонами х, у, z, то его диагональ дает длину и направление радиуса-вектора; диагональ параллелепипеда со сторонами р, q, r дает направление касательной и длина ее равна 1; диагональ параллелепипеда со сторонами

дает направление радиуса кривизны, а длина ее равна обратному значению последнего; наконец, если взять стороны равными и т. д., то длина диагонали будет та же, что и в предыдущем случае, а направление ее будет перпендикулярным к соприкасающейся плоскости.

В тесной связи с этими исследованиями находилась работа Эйлера о «телах», поверхность которых можно наложить на плоскость [Nov. Comm. Petrop., 1771 (1772)]. Подобными развертываниями многократно занимались с чисто практической точки зрения еще ранее Фр. Деран («Архитектура сводов и т. д.» -- L'architecture des voutes etc., Париж, 1643) и особенно

А. Фрезье («Теория и практика резки камней и дерева» -- La theorie et la pratique de la coupe des pierres et des bois, I, Страсбург, 1737; см. также ниже о Гварини, стр. 309). Но понятие развертывающейся поверхности создал Эйлер. Он взял на плоскости бесконечно малый прямоугольный треугольник, исходящий из точки (t, u), и определил на поверхности такой треугольник, исходящий из точки х, у, z, который был бы конгруэнтен с первым. Полагая и т. д., он получил условия развертываемости поверхности в виде

l2 +m2 + n2 =1, л2 + м2 + н2 =1, l л + m м + n н =0.

Затем Эйлер аналитически и геометрически показал, что касательные к любой пространственной кривой всегда образуют развертывающуюся поверхность, и что тоже относится к поверхности, образуемой общими касательными двух «тел», одно из которых рассматривается как светящееся. Тем самым было введено понятие развертывающихся поверхностей, а точки их представлены были с помощью двух параметров.

Замечательна не столько по результатам, сколько по своему методу относящаяся к тому же времени работа Эйлера о кратчайших линиях на поверхностях [Nov. Act. Petrop., 1799--1802 (1806); поступила в 1779]. Во-первых, для интегрирования дифференциального уравнения Эйлер здесь употребил угол, образуемый кратчайшими линиями с параметрическими линиями z = const., что, впрочем, не было у него выражено ясным образом. Во-вторых, он ввел прием, симметричный относительно трех координат, так что и дифференциальное уравнение получалось в симметричной форме. Некоторые другие работы Эйлера, о которых мы только упомянем, посвящены вопросу о спрямляемых кривых на шаре, эллипсоиде вращения и конусе [Nov. Comm. Petr., 1770 (1771); Act. Petr., 1781, I (1784), Nov. Act. Petr, 1785 (1788)]. [11]

§3.7. Общие поверхности

Во второй половине XVIII столетия прочное основание получила также дифференциальная геометрия общих поверхностей. Уравнение касательной плоскости к поверхности дали одновременно Тенсо и Монж в статьях (Mem. div. sav., IX, 1780). Обозначая координаты точки поверхности х, у, z, а координаты произвольной точки касательной плоскости р, ц, щ, Тенсо записал ее уравнение в виде

Заключенные в скобки дифференциальные частные нужно здесь рассматривать как частные производные. Кроме того, Тенсо рассмотрел задачу об определении линии прикосновения к поверхности касательного конуса, проведенного к ней из точки (а, b, с), как это сделал и Монж. Затем он разобрал такую же задачу для параллельных касательных и вопрос об установлении уравнений соответствующих конуса и цилиндра. Впрочем, для всех этих задач он ограничивался лишь указаниями. Готовые формулы или примеры отсутствовали. У Монжа уравнение касательной плоскости получило уже вполне современный вид:

z=p' ( x - x') + q' (y - y' ) + K'.

Эйлер в этой области также открыл ряд фундаментальных теорем. В одной большой работе о кривизне поверхностей [Mem. Ac. Berlin, 1760 (1767)] он прежде всего приступил к задаче об определении радиуса кривизны сечения данной поверхности, лежащего в плоскости z = б у--в x+г причем получил, разумеется, весьма сложное выражение. Затем он провел секущую плоскость через нормаль к поверхности и вычислил новое выражение для радиуса кривизны сечения, нисколько не более простое, чем предыдущее. Далее, он назвал «главным сечением» нормальное сечение, перпендикулярное к плоскости хОу. Для этого и еще для другого нормального сечения, перпендикулярного к первому, получались уже более простые выражения радиуса кривизны. Обозначив затем через ц угол, образуемый плоскостью произвольного нормального сечения с плоскостью главного сечения, Эйлер снова составил общее выражение радиуса кривизны. Получившуюся опять-таки очень громоздкую формулу он несколько упростил и в качестве примеров взял цилиндр

z = v(aa -- yy),

конус

z= v (ппхх --уу)

и эллипсоид

zz = aa -- тхх -- пуу.

Только в конце работы он привел формулу радиуса кривизны в виде

,

из рассмотрения которой извлек важные заключения. Так, например, он нашел, что три известных радиуса кривизны позволяют определить все остальные его значения в точке поверхности, что в каждой точке поверхности существует наибольший радиус кривизны f и наименьший g, плоскости которых взаимно перпендикулярны и которые в свою очередь определяют общую кривизну элемента поверхности, а именно:

.

В статье, носившей то же название, что и работа Эйлера, Ж. Менье поставил целью развить результаты последней (Mem. div. sav., 1785; поступила в 1776). Но Менье исходил из совершенно иной концепции. Отправляясь от мысли, что совпадение частных дифференциалов до второго порядка включительно обусловливает совпадение кривизн двух поверхностей, Менье заменил в точке u, v, t (причем ось t лежала на нормали к поверхности в этой точке) поверхность параболоидом

.

Менье преобразовал это уравнение к виду

и затем доказал, что каждый элемент поверхности (термин Менье) можно получить вращением малой дуги окружности вокруг оси, параллельной касательной плоскости этого элемента. Для радиуса этой окружности r и расстояния оси от точки поверхности с он получил выражения

и

.

переходящие одно в другое; при этом оказалось, что r и с совпадают с найденными Эйлером крайними значениями f и g радиусов кривизны нормальных сечений поверхности. К этому Менье присоединил теорему, носящую его имя. Именно, если R' есть радиус кривизны нормального сечения, проходящего через касательную AQ к кривой на поверхности, то R, радиус кривизны сечения, лежащего в другой плоскости, проходящей через AQ, определяется формулой R = R' sin щ, где щ -- угол между обеими плоскостями. Отправляясь от этого, Менье дал полный разбор соотношений между кривизнами на элементе поверхности. Среди примеров он рассмотрел, в частности, задачу об определении поверхностей, для которых r=с. Интегрируя соответствующее дифференциальное уравнение, он получил, что

1=(Ax+B)2+(Ay+C)2+(Az+D)2

т. е., как и должно быть, уравнение шаровой поверхности. Вслед за тем он приступил к решению задачи об отыскании среди всех поверхностей, проходящих через контур, ограниченный данной пространственной кривой, поверхности с наименьшей площадью. С помощью своего способа образования элемента поверхности он вывел важное условие, r+=0, а отсюда получил дифференциальное уравнение в частных производных минимальных поверхностей, найденное уже раньше другим способом Лагранжем [Misc. Taur., 1760/61 (1762)]. Частные интегралы этого уравнения дали ему в качестве примера минимальных поверхностей винтовую поверхность и катеноид. Принимая либо r, либо равным бесконечности, Менье далее вывел дифференциальное уравнение развертывающихся поверхностей, данное уже Монжем, а в заключение доказал, что оба радиуса кривизны общих линейчатых поверхностей всегда бывают различного знака.

Несмотря на появление этих прекрасных работ, общее понятие кривизны поверхности осталось невыясненным вплоть до К. Гаусса (1828). Эйлер даже ошибочно принял, что всякий элемент поверхности можно рассматривать как сферический («Dioptrica», I, Петербург, 1769); это же случилось раньше с Лейбницем (письмо к Иоганну Бернулли от 29 июля 1698), а позднее также с Далам-бером [«Encyclopedic methodique», Париж, 1784, статья «Кривая» («Courbe»), отдел «Кривые поверхности» (Surfaces courbes)].

Кроме упомянутых работ общего характера в рассматриваемый промежуток времени появился еще ряд работ, посвященных частным вопросам и прежде всего определению поверхностей, обладающих заданными свойствами. Так, Эйлер в Nov. Comm. Petr., 1769, I (1770) исследовал парадокс, заключающийся в том, что поверхности, площадь которых является данной функцией х, у, не должны быть конгруэнтны, как это имеет место в аналогичном случае для плоских кривых. Эйлер нашел дифференциальное уравнение с частными производными

p2+q2=f(x,y)

и проинтегрировал его в случае

f(x,y)=m2+n2.

При этом, кроме плоскости

z = a+ mx +пу,

получались все развертывающиеся поверхности, возникающие при движении плоскости, сохраняющей постоянный угол с осью Оz.

В другой статье [Nov. Act. Petr., 1788 (1790); поступила в 1776] Эйлер занялся поисками поверхностей с постоянным отрезком нормали между поверхностью и плоскостью хОу. Дифференциальное уравнение

z = a

дало здесь «искривленные цилиндры» («cylindri incurvati»), которые позднее были названы поверхностями каналов и которые возникают, когда центр некоторого данного круга движется вдоль произвольной кривой в плоскости хОу, причем плоскость круга все время остается перпендикулярной к касательной в соответствующей точке кривой. Эйлер здесь особо отмечает появление таких произвольных функций. Он тотчас же обобщил вопрос, потребовав, чтобы отрезок нормали представлял собой некоторую функцию Z аргумента z, так что в указанном выше дифференциальном уравнении вместо а появляется Z. В образовании соответствующих поверхностей при этом вместо окружности участвует некоторая другая плоская кривая. Так получаются геометрические образы, ныне называемые «резными поверхностями» («Gesimsfla-chen»). Эйлер возвращался к обоим видам поверхностей еще в Nov. Act. Petr. 1792 (1797; поступило в 1777) и 1794 (1801; поступило в 1778).

Эйлер перенес на пространство также проблему ортогональных траекторий [Mem. Ac. St-Pet., 1815/16 (1820; поступило в 1782)], причем в нескольких примерах ему удалось провести решение полностью. В Mem. Ac. Turin, (2) I (1784/85) Монж довольно общим образом рассмотрел вид дифференциального уравнения с частными производными, соответствующего классу поверхностей, конечное уравнение которых содержит п произвольных функций.

Как видно из заметки, опубликованной впервые в «Посмертных сочинениях» (Opera posthuma, I, Петербург, 1862), Эйлер уже около 1770 нашел общие уравнения, выражающие условия изгибаемости поверхностей, в опубликовании которых выход его работы опередил Гаусс (1828).

Дифференциальная геометрия получила применение и в картографии того времени. Ламберт в своих «Очерках об употреблении математики и ее приложении» (Beytrage zum Gebrauch der Mathematik und deren Anwendung, Berlin, 1772) дал дифференциальные формулы стереографической проекции. Для других видов отображения он лишь ясно разобрал требования общего характера. И здесь новые пути проложил Эйлер в одной работе о представлении шаровой поверхности на плоскости [Act. Ac. Petr., 1777, I (1778)]. Он поставил задачу найти координаты точки плоскости х, у как функции географических долготы t и широты и так, чтобы определяемое ими отображение удовлетворяло некоторым условиям. Затем он показал, что добиться конгруэнтности невозможно, и выдвинул требование, чтобы меридианы и параллельные круги перешли в ортогональные системы кривых, в частности, в систему линий, параллельных осям координат (что применяется в проекции Меркатора). Приведя пример отображения с сохранением площадей, он затем детальнее занялся отображением с сохранением углов. Условием ортогональности градусной сети является

pq+rs=0

где

Кроме того, должны соблюдаться условия

dx=p du+r dt cosu, dy = r du - p dt cosu.

Для интегрирования Эйлер впервые употребил здесь комплексные величины, составив выражение dx + i dy, с тем, чтобы правая часть этого выражения превратилась в произведение. Решение тогда имеет вид ( обозначает здесь символ функции):

x = [s (cost -- i sint)] + [s (cost + i sint)],

iy = [s (cost -- i sint)] - [s (cost + i sint)],

В заметке, непосредственно примыкавшей к этой статье, Эйлер показал, что стереографическая проекция является частным случаем рассмотренного им отображения. Для отображения шара с сохранением размеров площадей Эйлер привел в этой статье только частные решения, именно, для случая, когда градусная сеть переходит в две ортогональные системы кривых. [11]

§3.8. Заслуги Эйлера в преобразовании и дальнейших успехах тригонометрии

Понятно, что столь ярко выраженный аналитический гений, каким являлся Эйлер, раз занявшись вычислительной тригонометрией, должен был значительно продвинуть ее вперед. Повод обратиться к тригонометрии представился ему в уже неоднократно упоминавшемся «Введении в анализ» (1748). В восьмой главе его первого тома Эйлер впервые ввел в анализ угловые функции как числовые величины, с которыми можно производить вычисления, как со всякими другими, так, чтобы впредь они уже не оказывали влияния на размерность выражений. И хотя Эйлер и не определил нигде тригонометрические функции явно как отношения сторон прямоугольного треугольника, но всегда рассматривал их именно так. Если отвлечься от несущественных мелочей, то изложение и символика Эйлера были вполне современными. Уже в одной работе в Coram. Ac. Petr., 1729 (1735) он записал теорему косинусов сферической тригонометрии в виде

cos : ВС = cos : АВ * cos : AC + cos A * sAB * sAC;

целый синус, который все еще употребляло большинство прежних авторов, здесь уже был принят равным 1. Обозначения тригонометрических функций во «Введении» были таковы: sin. A. z или sin. z (A = arcus), cos. A. z или cos. z, tang. z, cot. z и т. д.

В начале названной главы были впервые систематически установлены формулы для sin (z + ), sin (z+) и т. д. Написав:

Эйлер раскрыл скобки и получил таким путем формулу для cosnz; аналогично он нашел формулу для sinnz. Беря п бесконечно большим, a z бесконечно малым, так что cosz=l и sinz=z, он вывел из этих формул бесконечные ряды для синуса и косинуса. Отсюда он получил ряды для синуса, косинуса, тангенса и котангенса , отчасти опубликованные им уже в Comm. Ac. Petr., 1739 (1750). Затем он исчерпывающим образом показал, как можно использовать эти ряды для вычисления тригонометрических таблиц. Позднее в Nov. Comm. Ac. Petr., 1754/55 (1760) он вывел дальнейшие ряды для sinn, cosn, sinm, cosn, следующие по функциям углов, кратных . На связь между показательной и тригонометрическими функциями Эйлер натолкнулся уже в одной работе о рядах, помещенной в Comm. Ac. Petr., 1740 (1750). Соответствующую определяющую формулу для синуса он дал в Misc. Berol., 1743, но доказаны были формулы для синуса и косинуса только во «Введении». О результатах Эйлер, очевидно, ничего не знал. Формулы

cos х = (eix + e-ix) и sin x = (eix -- e-ix)

он получил во «Введении» из выражений

и

полагая п = . К этому он присоединил еще формулу

Определение sin(x+iy) и cos(x+iy) он впервые дал в Mem. Ac. Berl., 1749.

Суммирование рядов синусов и косинусов, аргументы которых растут в арифметической прогрессии, Эйлер произвел уже в Misc. Berol., 1748. Во «Введении» он вновь вернулся к этому вопросу с более общей точки зрения. Позднее (Opuscul. anal., Петербург, 1783) он занялся аналогичными рядами, аргументы которых образуют геометрическую прогрессию. Представлением тригонометрических функций в виде произведений Эйлер начал заниматься уже в Comm. Ac. Petr., 1734/35 (1740), где разложил в бесконечное произведение синус. То же самое он провел для синуса и косинуса в Comm. Ac. Petr., 1740 (1750) и Misc. Berol., 1743. Все это вместе с некоторыми дополнениями было включено во «Введение», в 14-й главе которого он также детально занялся вопросом об умножении и делении углов, т. е. о тригонометрических функциях кратных углов. Мы указывали в первой части, что в этих разнообразных исследованиях Эйлер действовал более творчески, нежели критически. Это столь глубоко коренилось в его натуре, что он оставил без внимания возражения, сделанные ему главным образом Николаем I Бернулли уже в 1742 и 1743. Эйлер продолжал производить вычисления над любыми бесконечными рядами, распространял теоремы о конечных многочленах на бесконечные и придавал любые значения индексу п, в начале доказательства считавшемуся целочисленным. Несмотря на это, получаемые им результаты обычно бывали справедливы, хотя в некоторых случаях он пришел и к ошибочным выводам, как, например, в упоминавшейся статье в Nov. Comm. Ac. Petr., 1754/55 (1760).

Во втором томе «Введения» (глава 22-я) Эйлер применил к решению трансцендентных уравнений, вроде s=cos s или s=sin 2s и т. п., правило ложного положения. Как сообщает он сам, он придумал подобные задачи с целью посмотреть, нельзя ли приблизиться таким путем к квадратуре круга. Позднее, когда Ламберт уже доказал иррациональность , Эйлер вновь занялся подобными рассмотрениями, подчеркивая, что работа Ламберта отнюдь еще не доказала невозможность квадратуры круга.

Прежде чем перейти к заслугам Эйлера в сферической тригонометрии, упомянем еще о двух тригонометрических разложениях, лежащих несколько в стороне. Эйлер нашел их, развивая предложенный Декартом и затем неоднократно открывавшийся вновь способ построения окружности данной длины (Декарт, Opuscula posthuma, Амстердам, 1701, ср. его Oeuvres, т. X). Это бесконечный ряд

tg + tg +tg +...= - 2ctg2

[ср. Nov. Comm. Ac. Petr., 1760/61 (1763)] и бесконечное произведение

cos coscos... = ,

которое Эйлер другим путем вывел уже в Comm. Ac. Petr., 1737 (1744).

Сферической тригонометрией Эйлер специально занялся в двух больших статьях, подойдя при этом к ней с различных точек зрения. В первой, помещенной в Mem. Ac. Berl., 1753 (1755) он совершенно общим образом построил сферическую тригонометрию как геометрию треугольников, составленных на поверхности сферы линиями кратчайшего расстояния. Эйлер исходил из прямоугольного треугольника, обозначив катет АР через х, катет РМ через у, гипотенузу AM через s [рис. 4]. Если О -- полюс большого круга (экватора), на котором лежит АР, а Ор -- меридиан, бесконечно близкий к ОР, то

Рис. 4.

Mm = ds, mn = dy, Pp = dx

и линия Мп, лежащая на параллельном круге широты у, равна dxcosy, так что

ds = .

Далее, Эйлер искал условия, при которых интеграл этого элемента дуги будет иметь минимальное значение, и получил, таким образом, 10 уравнений, возникающих из правила Непера. Здесь в первый раз появились обозначения, которые мы теперь склонны считать само собой разумеющимися и отсутствие которых часто придавало такой неудобный вид прежним работам. Мы имеем в виду обозначение трех сторон буквами а, b, с, а противолежащих вершин и углов треугольника буквами А, В, С. То, что мы обозначаем последние по большей части буквами а, , , конечно, менее существенно. Греческие буквы были введены лишь в XIX столетии, хотя иногда а, , , применялись уже А. Кестнером в его «Основаниях арифметики, геометрии и тригонометрии» (Геттинген, 1759; 6-е изд. 1800). Новые обозначения позволили Эйлеру записать свои десять уравнений вполне в современном виде. Затем он получил из них шесть различных основных уравнений для прямоугольного треугольника. Соответствующим образом Эйлер поступил и в случае общего сферического треугольника. Определив минимум одной из сторон, он прежде всего нашел пять фундаментальных уравнений, из которых затем вывел теорему синусов, обе теоремы косинусов и так называемое правило котангенса (впервые встречающееся у Виета); последнее появилось у него в форме

sin a tg С -- sin В tg с = cos a cos B tg C tgc,

переходящей в употребляемую ныне при делении на tgCtgc. Эйлер записывал каждую теорему в трех видах, которые получаются друг из друга циклической перестановкой, хотя сам Эйлер ею не пользовался. О полярном треугольнике Эйлер не упоминал, и вообще, с точки зрения полноты, в статье имелось несколько малозначительных пробелов. Зато применения и преобразования фундаментальных теорем были в высшей степени богатые.

Среди прочего материала здесь имелись все формулы для половинных углов, правда, без сокращенных обозначений полусумм сторон и углов, затем четыре аналогии Непера--Бригса, употребление вспомогательного угла в теореме косинусов, причем последняя приводилась еще в новой форме:

cos a=

сообщалась и формула, полярная с приведенной.

Прибавим, что вслед за этой статьей Эйлер в том же томе Mem. Ac. Berl. поместил работу, подробно излагавшую тригонометрию на поверхности сфероида, особо учитывая вопросы, связанные с измерением земли. Аналогичные исследования были произведены позднее дю-Сежуром [Mem. Ac. Paris., 1778 (1781)].

Во второй статье по сферической тригонометрии [Comm. Ac. Petr., 1779 (1782)] Эйлер принял для построения системы ее формул элементарную основу. Он исходил здесь из трехгранника, который пересекал соответствующими плоскостями, с тем, чтобы после применить теоремы плоской тригонометрии (подобно Копернику). Он вывел, таким образом, теорему синусов, теорему косинусов для сторон и новую формулу, связывающую пять элементов:

cos A sin с = cos a sin b -- sin a cos b cos С,

отметив, что эти три формулы содержат в себе всю сферическую тригонометрию. Полученное здесь третье уравнение Эйлер подверг неоднократным преобразованиям. Он вывел из него так называемую формулу котангенсов, теорему косинусов для углов и, с помощью теоремы синусов, полярную с ней формулу. Лишь после этого он ввел полярный треугольник и объяснил его способ применения, привел, частично выведя их по-новому, логарифмические формулы и с полным правом заявил, что его статья дает полное (можем прибавить: первое полное) изложение системы сферической тригонометрии. [11]

ГЛАВА IV. Влияние Леонарда Эйлера на развитие теории чисел

С конца XVII до тридцатых годов XVIII столетия мы не можем назвать какого-либо замечательного теоретико-числового открытия. Математики были слишком заняты разработкой возникших недавно исчисления бесконечно малых и аналитической геометрии. Только Эйлер, распространивший свою огромную активность на все области математики, уделил внимание этой отвлеченнейшей ее ветви и даже с особенной любовью занимался ею на протяжении всей жизни. Из многочисленных работ Эйлера мы, разумеется, можем выделить только важнейшие результаты и методы, не вдаваясь в частности.

§4.1. Целочисленное решение неопределенных уравнений

В целом ряде статей Эйлер занялся целочисленным решением неопределенных уравнений. Уже в раннем периоде своей деятельности он нашел упомянутый выше способ решений уравнений первой степени с двумя неизвестными [Comm. Ac. Petr., 1734/35 (1740)], который мы встретили у Ролля. В «Полном введении в алгебру» (1768/69) Эйлер применил тот же прием к линейным уравнениям с несколькими неизвестными. К последним он возвратился затем в статье, опубликованной уже после его смерти во втором томе «Аналитических сочинений» (Opuscula analytica, 1785). Лагранж в Mem. Ac. BerL, 1768 (1770) присоединил к методу Эйлера еще свой известный способ цепных дробей, весьма близкий, впрочем, к способу Ваше. Еще ранее Эйлер показал [Comm. Ac. Petr., 1732/33 (1738)], как получается бесконечно много целочисленных решений уравнения ах2 + bx + с =y2, если известно одно такое решение. Несложное преобразование этого уравнения немедленно приводит задачу к более простой, именно к определению целочисленных решений уравнения A+By2=z2. В Nov. Comm. Ac. Petr. за 1762/63 (1764) и 1773 (1774) Эйлер сумел также дать правила нахождения одного такого решения при положительном В. Однако его исследования вскоре были отодвинуты на задний план результатами Лагранжа, который привел к виду А+Вt2= и2 общее уравнение

Ах2 + bxy + су2 +dx +cy +f=0

и в Mem. Ac. Berl., 1769 (1771) подробнейшим образом рассмотрел вопрос о решении первого уравнения. Прием Лагранжа заключался в том, что посредством подходящих преобразований он постепенно уменьшал коэффициенты, пока один из них не становился равным единице, после чего решение сводилось к решению задачи Ферма. Эйлер все же вернулся впоследствии к общей проблеме снова и сообщил два метода, позволявших по одному известному решению найти бесконечно много решений. Вместе с тем он нашел условия, при которых рациональные решения переходят в целочисленные [см. Nov. Comm. Ac. Petr., 1773 (1774) и «Аналитические сочинения», т. I, 1783]. Эйлер подошел к аналогичной задаче и для уравнений третьей и четвертой степеней. Последние исследования, в которых предшественником Эйлера был еще Ферма, рассмотревший две частные формы четвертой степени, относились к 1780, но появились много времени спустя после смерти Эйлера [например, в т. XI Mem. Petersb. (1830)], когда они представляли уже почти лишь исторический интерес.

В круг своих занятий Эйлер включил также вопрос о целочисленном решении систем диофантовых уравнений высших степеней и систем более чем с двумя неизвестными, которому посвятил целый ряд статей. Однако они не оказали влияния на последующее развитие теории чисел, ибо не давали общих методов и содержали только искусные приемы в частных случаях.

Эйлер весьма обстоятельно занялся вышеупомянутым специальным случаем целочисленного решения так называемого уравнения Пелля, с которым, как мы видели, он встретился рано. Он установил, что для преобразования трехчлена ах2+bх+с в квадрат y2 необходимо решение уравнения Пелля, и посвятил ему поэтому несколько статей. В последней из них, появившейся в Nov. Comm. Ac. Petr., 1765 (1767), он, наконец, привел общий способ его решения, показав, каким образом приводит к цели вычисление подходящих дробей разложения в цепную дробь. Сам по себе его метод не оставлял желать ничего лучшего, но обоснование его страдало множеством недостатков. Лагранж, начавший тогда же работать над этим вопросом и вначале не знавший о статье Эйлера, дал в четвертом томе Misc. Taur. (1766/69) первое строгое доказательство того, что уравнение всегда разрешимо, и сообщил метод его решения. Ознакомившись с работой Эйлера, он видоизменил и упростил свой способ в Mem. Ac. Berl., 1768 (1770) так, что в основном он уже несущественно отличался от приема Эйлера. Метод Лагранжа тот же, который употребляли еще индусы, не пытаясь, конечно, строго его обосновать. В самой ясной и простой форме метод Эйлера -- Лагранжа был изложен затем Лежандром в его знаменитом «Опыте теории чисел» (Essai sur la theorie des nombres, Париж), впервые опубликованном в 1797/8.

Из сказанного видно, что систематическое изучение вопросов неопределенного анализа начато было только Эйлером и достигло известного завершения в его работах и работах Лагранжа. Эйлер поэтому поспешил сделать свои исследования в этой области доступными более широким кругам, включив их во вторую часть своего руководства по алгебре. Во французском переводе этого первого курса теории неопределенных уравнений, выпущенном в 1774, Лагранж снабдил отдельные главы дополнениями, еще значительно увеличившими ценность и полезность книги.

До сих пор рассматривались решения неопределенных уравнений, интерес к которой возбудили Диофант и Баше. Теперь обратимся к задачам, возникшим, главным образом, из оставшихся без доказательства теорем Ферма. Эйлер неоднократно обращался к утверждению Ферма, что уравнение хп+уп =zп при n>2 неразрешимо в целых числах. Эйлер сделал еще один шаг вперед, доказав с помощью того же метода справедливость теоремы при п=3. Не вполне аккуратное доказательство для этого случая он сообщил еще в 1753 Гольдбаху. Точное доказательство им было впервые напечатано в Nov. Comm. Ac. Petr., 1760/61 (1763) и подробнее проведено в «Алгебре». Тщетно пытаясь найти доказательство теоремы в общем виде, Эйлер натолкнулся на ряд прекрасных теорем о делимости чисел, имеющих форму степенных двучленов; они находятся в Nov. Comm. Ac. Petr., 1747/48 (1750) и в 9-й главе посмертного «Трактата по теории чисел» (Tractatus de numerorum doctrina, опубликовано во 2-м томе Comment, arithmeticae, Петербург, 1849).

Другие утверждения Ферма привели Эйлера к исследованию чисел, которые могут быть представлены некоторыми специальными формами второй степени вида тх2 + пу2 [см. Comm. Ac. Petr., 1744/46 (1751), Mem. Ac. Petr., 1812 (1815) и Nov. Act. Ac. Petr., 1783 (1787)]. Так он доказал теорему Ферма, гласящую, что всякое простое число вида 4п+1 можно единственным образом представить как сумму двух квадратов, и теорему Ваше о том, что всякое неквадратное число можно представить как сумму двух, трех или четырех квадратов. Однако он не дал ни общей трактовки задачи о представлении числа в виде некоторой данной формы, ни метода, позволяющего a priori устанавливать свойства таких чисел.[12]

§4.2. Теорема Эйлера

Мощным побудительным стимулом явилась для него так называемая теорема Ферма о сравнении ат1 (mod p), значение которой он оценил сразу. Эйлеру принадлежат два доказательства этой теоремы, покоящихся на разных основаниях. Первое [Comm. Ac. Petr., 1736(1741)] использовало тот факт, что все биномиальные коэффициенты, соответствующие показателю степени р, делятся на р, и было проведено с помощью индукции. Второе и третье доказательства появились в Nov. Comm. Ac. Petr. за 1758/59 (1761) и 1760/61 (1763).

В последней статье Эйлер обобщил теорему Ферма, установив (в обозначениях, ведущих свое происхождение от Гаусса), что

а(m) 1 (mod m),

где (т) есть число чисел, взаимно простых с т и меньших т. Встречающееся здесь число (т), которое по предложению Гаусса называют теперь «функцией Эйлера», последний представил в той же работе в виде

где р, р',... -- простые делители числа т. Если т само есть простое число, то числа 1, 2, 3,..., (р - 1) будут с ним взаимно простыми, и получается важная теорема, высказанная Дж. Вильсоном и опубликованная в 1770 Варингом в его «Алгебраических размышлениях». Теорема эта гласит, что величина 1, 2, 3... (р - 1)+1 делится без остатка на р, где р, как и всюду здесь, -- простое число. Эта теорема, как и теорема Ферма, заключается в установленном Лагранжем [Mem. Ac. Bed., 1771 (1773)] общем сравнении

xp-l - l=(x + l)(x + 2)...(x+p - 1) (mod р)

при x = 0. Она была также доказана Эйлером («Аналитические сочинения», I, 1783) и Гауссом («Арифметические исследования», 1801). Упрощенное доказательство теоремы Ферма дал еще И. Г. Ламберт, охотно занимавшийся и теорией чисел (Nov. Acta Erud., 1769).

§4.3. Вычеты

К важнейшим достижениям в исследовании целых чисел Эйлера привели старания доказать другую, упоминавшуюся уже, теорему Ферма о том, что всякое простое число вида 4п + 1 разбивается на сумму двух квадратов. Эйлер многократно и с различных сторон подходил к этой теореме и при этом нашел ряд интересных предложений. Окончательно доказать ее Эйлеру удалось лишь в 1749 [Nov. Comm. Ac. Petr., 1754/55 (1760)], воспользовавшись тем ходом мыслей, которым он шел в первом доказательстве теоремы о сравнении ат = 1 (mod р). Это привело его к рассмотрению остатков от деления квадратов 12, 22, 32,..., (р - 1)2 на простое число р. Эйлер немедленно увидел, что при этом получаются «многие замечательные свойства, изучение которых проливает немало света на природу чисел». Таким образом, он впервые поставил вопрос о квадратичных вычетах и понял их значение. Здесь уже встречаются и термины: вычеты (residua) и невычеты, (non residua). В том же месте и в позднейших статьях, в которых он занялся степенными вычетами вообще и рассмотрел полные и неполные системы вычетов, он установил важнейшие относящиеся к ним теоремы. В Nov. Comm. Ac. Petr., 1773 (1774) он ввел также понятие и слово «первообразный корень». Поэтому Эйлера справедливо называют творцом теории степенных вычетов, тем более что ему принадлежит и открытие «закона взаимности» квадратичных вычетов, который Гаусс называл «основной теоремой» (theorema fundamentale) и который до недавнего времени приписывали Лежандру. Закон взаимности Эйлер установил еще в 1772, а опубликован он был, правда, без доказательства, в 1783 в первом томе «Аналитических сочинений».

§4.4. Разложение на простые множители

Нужно еще добавить кое-что о разложении чисел на множители и о связанных с этим теоремах о простых числах. Уже Валлис в своем «Рассуждении о соединениях» (Discourse of Combinations, 1685) высказал теорему, гласившую, что всякое число можно разложить на простые множители единственным образом. Он выразил словесно важную формулу, согласно которой число делителей числа т=..., где р, q, r,... - простые числа, равно (+1) (+l)(+1)..., и нашел, что сумма всех этих делителей равна

благодаря этому Валлис решил некоторые задачи, поставленные перед ним Ферма. Для нахождения самих делителей, именно простых делителей больших чисел, Эйлер предложил метод, основанный на представлении этих делителей в виде квадратичной формы mx2+ny2 [Nov. Comm. Ac. Petr., 1768 (1769) и Nouv. Mem. Ac. Bed., 1776 (1779)]. Исследования Лагранжа о подобных квадратичных формах также смогли быть применены к определению простых делителей. Ник. де-Бегелен разработал в Nouv. Mem. Ac. Bed., 1775 (1777) метод отыскания простых делителей вида 4х2+1. Эйлер в письме к Бегелену обратил его внимание на то, что эти делители можно получить из более общей формы nх2 + у2, и указал правило подходящего выбора числа п, давшее ему целый ряд больших простых чисел [Nouv. Mem. Ac. Berl., 1776 (1779)]. Наконец, десять лет спустя Эйлер указал общий признак, позволяющий решать, является данное число простым или составным [Nov. Act. Ac. Petr. 1797/98 (1805)].

Вместе с тем математики того времени тщетно искали общее, аналитическое выражение для представления простых чисел. Лежандр, которому удалось доказать, что это выражение не может быть рациональным, потерял всякую надежду на то, что его когда-либо удастся найти. Вероятно, такое аналитическое выражение не существует вообще. Столь же мало вероятно существование функции (х), составленной конечным образом и точно представляющей число простых чисел, не превосходящих числа х. Теорему о том, что эта функция (х) при возрастании х асимптотически приближается (строго доказанную лишь Ж.. Адама-ром и. Валле-Пуссеном в 1896), предвидел еще Лежандр, не имея, впрочем, никакого представления о ее доказательстве. Он именно нашел (в «Опыте», 1798 и, точнее, во втором издании 1808) эмпирическую формулу

К разложению чисел на множители примыкает их разбиение на слагаемые, которые можно отнести к области аналитической теории чисел, т. е. к теоретико-числовым исследованиям, опирающимся на рассмотрения аналитического характера. Эйлер, посвятивший исследованиям этого рода 15-ю и 16-ю главы первого тома «Введения» (1748), и здесь опять указал путь вперед. Он исходил из разложения произведения

(1+x z)(1+x z)(1+x z)

где , , -- положительные целые числа, в ряд

1+Pz+Qz2+Rz3+…

Отсюда немедленно следовало, что

Р = x +x +x +…, Q = x+ + x++ …

и т. д., и было видно, что если показатель одной и той же степени может представлять сумму двух или нескольких членов ряда , , различными способами, то такая степень имеет коэффициент, заключающий в себе столько единиц, сколько существует таких способов. Поэтому, если требуется узнать, сколькими способами можно представить число п в виде суммы т неравных членов ряда, , ,..., то это укажет коэффициент имеющегося в разложении члена хnzm. Аналогичным образом Эйлер рассмотрел дробь

и вывел теорему, что коэффициент члена хпzm указывает, сколькими различными способами можно получить целое число я в виде суммы т равных или неравных чисел ряда, , ... Из этих двух главных теорем при тех или иных частных значениях z был получен ряд отдельных теорем об аддитивном разбиении чисел. Эйлер построил также таблицу, продолженную затем в Nov. Comm. Ac. Petr. [1750/51 (1753), см. также 1769 (1770)], в которой можно было прочесть, сколькими способами можно представить число п в виде сумм чисел 1, 2, 3, ...,т. В указанных томах Nov. Comm. Ac. Petr. [см. также 1754/55 (1760)] он вывел отсюда так называемую пентагональную теорему, гласящую, что число разбиений числа п на четное число различных слагаемых равно числу разбиений на нечетное число слагаемых, кроме случая п , когда для т четного (нечетного) оно на единицу больше (соответственно, меньше). Тот же метод дал Эйлеру важную формулу

левая часть которой распространена на все простые, а правая на все натуральные числа; правая часть теперь известна как «дзета-функция Римана». Из этой формулы получается также, что ряд натуральных чисел содержит бесчисленное множество простых чисел, что, впрочем, было известно еще из доказательства Евклида. Но теорему о том, что всякая неограниченная арифметическая прогрессия, первый член и разность которой взаимно простые, также содержит бесчисленное множество простых чисел, Эйлер смог высказать лишь в качестве предположения («Аналитические сочинения», т. II, 1783). Это предположение высказал и Лежандр в Mem. Ac. Paris, 1785 (1788). Доказано оно было лишь Дирихле в 1837. Наконец, Эйлер занимался дружественными и совершенными числами, известными еще древним, причем для обозначения суммы делителей числа п он ввел символ , сохранившийся и в последующее время (Nov. Act. Erud., 1747 и «Сочинения различного содержания», т. II, 1750).

Заключение

  • Всякая попытка жизнеописания, будь оно коротким или обстоятельным всегда открывает глаза автора на многие моменты. Так и случилось и при написании этой дипломной работы. Ведь когда имеешь дело с таким ученым, как Леонард Эйлер, очень трудно выбрать самое существенное из почти неизмеримого количества монографий и сочинений. Я старалась при этом перебросить мост через два столетия, которые отделяют нас от Эйлера, и давать разъяснения всякий раз, когда это было возможно.
  • Я хочу привести одну мысль К.А. Труесделла, высказанную им в торжественной речи при праздновании в Базеле 250-летия со дня рождения Леонардо Эйлера: «Эйлер представлял собой большое и широкое явление, каким был, например, Шекспир. Каждый, кто прочитает произведения того или другого, составит себе свое собственное, может быть и верное, но не всегда полное представление о них. В работах Эйлера можно найти прекрасные примеры разнообразных математических мыслей и, возможно, что читатель, выбрав какие-то иные эйлеровы исследования, придет и к иному их восприятию».
  • Сведения могут быть использованы при подготовке и проведении спецкурсов для студентов педвузов, педуниверситетов. Они окажутся полезными и для учителей математики в их профессиональной деятельности.
Список литературы

1. Biography in Dictionary of Scientific Biography (New York 1970-1990).

2. Biography in Encyclopaedia Britannica.

3. Condorcet M J, Eulogy for Euler

4. Calinger R, Leonhard Euler: The first St Petersburg years (1727-1741), Historia Mathematica 23 (1996), 121-166.

5. Boyer C B, The Age of Euler, in A History of Mathematics (1968).

6. Леонард Эйлер, введение в анализ бесконечно малых, том I, издание 2, М.: государственное издание, 1961.

7. Леонард Эйлер, введение в анализ бесконечно малых, том II, издание 2, М.: государственное издание, 1961.

8. Рюдигер Тиле, Леонард Эйлер, перевод с немецкого языка. Киев: «Вища школа», 1983.

9. Юшкевич. Ю.А. Леонард Эйлер. М. : Знание, 1982.

10. Юшкевич А.П. История математики в России. М.: Наука,1968 г.

11. Вилейтнер Г.В. История математики от Декарта до середины XIX столетия. М.: государственное издание, 1960.

12. Математика XIX века. М.: Наука, 1978.

Страницы: 1, 2


© 2007
Полное или частичном использовании материалов
запрещено.