![]() |
РУБРИКИ |
Локальные сети |
РЕКЛАМА |
|
Локальные сетиЛокальные сети14 РЕФЕРАТ по дисциплине: "Информационные сети и телекоммуникации" на тему: "Локальные сети" Ростов-на-Дону 2010 г. Содержание
3.1.1 Физический уровень CAN сети Передача сигналов производится по двухпроводной линии, классический вариант - витая пара. Могут применяться и другие физические линии связи, например, предусматривается возможность передачи по линии связи и сигналов, и питающего напряжения. Скорость передачи данных стандартизована и может лежать в диапазоне от 10 кбит/с до 1 Мбит/с. Из-за особенностей алгоритма арбитража применяется сигнальный код NRZ, а максимальная длина линии связи и скорость передачи данных жестко связаны. Время двойного оборота, которое определяется задержкой сигналов, должно быть меньше длительности одного битового интервала. На количество узлов ограничений нет. Побитовый неразрушающий арбитраж использует доминантный и рецессивный уровни сигналов в линии связи. Если трансиверы двух узлов формируют разные уровни сигналов, то в линии связи будет передаваться доминантный уровень. Протокол предполагает контроль уровня сигнала в линии связи параллельно с передачей, если сигнал в линии отличается от передаваемого, узел обязан прервать передачу. Таким образом, передача сообщения с доминантными сигналами всегда будет продолжаться, а передача сообщения с рецессивными сигналами может быть прервана при одновременной работе нескольких трансиверов. CAN протокол амплитуду сигналов жестко не определяет, границы сигналов заданы на уровне 1/3 от напряжения питания. При стандартном напряжении 5 В эти границы составляют 1,5 В и 3,5 В. Доминантный сигнал (0) соответствует напряжению больше 3,5 В на шине CAN H и напряжению меньше 1,5 В на шине CAN L. Рецессивный уровень (1) - одинаковые напряжения на обеих шинах. Входы трансиверов идентифицируют сигналы по разности напряжений, поэтому синфазные помехи не приводят к искажению сигналов. Для повышения надежности в трансиверах рекомендуется применять стандартные средства гальванической развязки. Синхронизация требует выделения синхросигналов из принимаемых сигналов.Т. к. код NRZ предполагает переключение сигналов только на границах битовых интервалов, протокол запрещает передачи длинных последовательностей одинаковых сигналов. Используемый алгоритм бит-стаффинга реализует добавление противоположного бита после любой последовательности, содержащей пять одинаковых бит. Это позволяет обеспечить надежную синхронизацию при передаче произвольных битовых последовательностей. Кроме того, последовательности, содержащие более пяти одинаковых бит подряд, используются как сообщения об ошибках. Тактовые генераторы всех узлов автономны и должны работать на номинально одинаковых частотах. Для обеспечения надежной синхронизации битовый интервал (время передачи одного бита, определяемое скоростью передачи) разбивается на временные кванты (период тактовых импульсов). В битовом интервале по стандарту может содержаться от 8 до 25 временных квантов. Для синхронизации всегда используется первый временной квант каждого битового интервала, а идентификация сигнала производится в последней четверти битового интервала (sample point). Максимальное расхождение во временных границах не превышает одного временного кванта для узлов с несколько отличающимися реально тактовыми частотами (частоты совпадают только номинально). И это расхождение не выводит точку идентификации (sample point) за допустимые пределы. Синхроимпульсы формируются по каждому переключению из доминантного в рецессивный уровень. Т.к. бит-стаффинг запрещает в кадре передачу более 5 одинаковых бит подряд, синхроимпульсы будут формироваться не реже одного раза за десять битовых интервалов. Разница в тактовых частотах узлов сети не должна приводить к ошибкам синхронизации за этот период, что несложно обеспечить современными аппаратными средствами. Рекомендуемые значения скоростей передачи (с указанием максимальной длины линий связи), временных квантов (величина обратная тактовой частоте) и количества временных квантов в битовом интервале приведены в таблице. Стандартное номинальное значение тактовой частоты, необходимое для синхронизации на максимальной скорости, равно 8 МГц. Для решения основных задач физического уровня выпускаются интегральные схемы трансиверов для различных стандартных напряжений питания и типов линий связи в соответствии с требованиями CAN протокола. 3.1.2 Канальный уровень CAN сети Реализация процедур CAN протокола производится специальными аппаратными средствами - CAN контроллерами. Эти контроллеры выпускаются либо в виде отдельных интегральных схем, либо являются встроенными элементами более сложных устройств. CAN контроллер в комплекте с ИС CAN трансивера обеспечивает работу локальной сети, реализуя все необходимые функции: от управления доступом к разделяемой среде передачи данных (MAC - процедуры) до передачи сигналов по линии связи. Для HLP протоколов остаются только функции настройки сети: автоматический выбор и задание скорости передачи, поддержка алгоритмов контроля сообщений, передача сообщений большого объема, автоматическое распределение идентификаторов в сети и т.п. Эти задачи могут быть решены без HLP протоколов, при проектировании сети можно вручную задать все необходимые параметры и режимы и произвести настройку CAN контроллеров. HLP протоколы позволяют автоматизировать эти процедуры и в ряде случаев изменять их в процессе работы. CAN сеть мультимастерная, т.е. все узлы имеют равные права доступа. Если шина свободна, каждый из узлов в произвольный момент времени может начинать передачу сообщения (кадра). Все передаваемые сообщения принимаются всеми узлами, CAN контроллер каждого узла содержит фильтр сообщений. Этот фильтр может быть настроен на обработку сообщений с определенными идентификаторами, все остальные сообщения будут игнорироваться. Т.е. сообщения в сети могут приниматься и обрабатываться любым числом узлов в зависимости от настройки их входных фильтров. Это позволяет, например, обрабатывать сообщения одного датчика всеми узлами, которым эти данные необходимы. При попытке одновременной передачи кадров несколькими узлами работает механизм поразрядного неразрушающего арбитража, обеспечивающего первоочередной доступ сообщениям с высоким уровнем приоритета (Carrier Sense Multiple Access with Collision Detection and Arbitration on Message Priority - CSMA/CD+AMP). Передача приоритетного сообщения будет продолжена, а остальные узлы должны прервать передачу до освобождения шины. Уровень приоритета определяется положением и количеством доминантных бит в поле арбитража, в котором передается идентификатор сообщения. Меньшему значению идентификатора соответствует более высокий уровень приоритета. Каждый передающий узел, формируя сигналы на шине, контролирует ее состояние и продолжает передачу до тех пор, пока состояние шины и передаваемые сигналы совпадают. Прекращение передачи происходит только при передаче рецессивного бита, если одновременно какой-либо другой узел передает доминантный бит. При этом узел, формирующий доминантный бит, передачу сообщения продолжит. Содержание передаваемых данных обозначается 11-битным идентификатором (29-битный идентификатор в расширенном формате), стоящим в самом начале сообщения. Особенностью является то, что этот идентификатор определяет приоритет сообщения. Кроме того, идентификаторы присваиваются не узлам, а сообщениям и определяются содержащимися в сообщениях данными. Такой тип рассылки сообщений называется "схема адресации, ориентированная на содержимое". При этом один узел может отправлять сообщения с различными идентификаторами в зависимости от характера передаваемых данных, а также принимать и обрабатывать сообщения с различными идентификаторами в зависимости от настройки входных фильтров. В результате применения схемы адресации, ориентированной на содержимое, обеспечивается высокая степень конфигурируемости и гибкости системы. Добавление в сеть новых узлов может осуществляться без модификации аппаратной или программной части сети. CAN протокол предусматривает два алгоритма передачи данных: передающий узел самостоятельно передает кадр данных, остальные узлы его принимают и обрабатывают; узел может послать запрос на необходимые данные, по этому запросу узел-источник данных передает сообщение, которое, как и в первом случае, принимается и обрабатывается. Данные передаются в кадре данных (data frame), а для запроса данных предусмотрен кадр запроса (remote frame), имеющий сходную структуру. Кадр для передачи по шине состоит из семи основных полей. CAN протокол поддерживает два формата кадров (стандартный и расширенный), которые различаются только длиной идентификатора (ID). Кадр стандартного формата начинается стартовым битом "начало кадра" (SOF - Start of Frame). За ним следует поле арбитража, содержащее 11-битный идентификатор и бит RTR запроса удаленной передачи (Remote Transmission Request). Этот бит указывает, передается ли кадр данных (0) или кадр запроса (1), в котором отсутствует поле данных. Управляющее поле содержит бит расширения идентификатора (IDE - identifier extension), который указывает тип формата кадра - стандартный (0) или расширенный (1). (В расширенном формате после бита IDE следуют 18 дополнительных бит идентификатора). Кроме того, в этом поле находятся зарезервированный для будущего применения бит R0 и четыре бита DLC для указания длины поля данных. За управляющим полем идут поле данных (0-8 байт) и поле (15 бит + рецессивный бит ограничителя этого поля) циклического контроля CRC, используемое для контроля кадра (x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1). Поле подтверждения (АСК) состоит из области АСК длиной в 1 бит и ограничителя поля АСК. АСК-бит помещается на шину передатчиком как рецессивный (логическая 1). Приемники, корректно принявшие эти данные, преобразуют его в логический 0, делая его доминантным. Таким образом, передающий узел получает подтверждение, что хотя бы один приемник правильно принял его сообщение. Сообщения подтверждаются приемниками независимо от результата тестирования данных при приёме. Конец сообщения указывается EOF (7 рецессивных бит), после которого идет пауза. Длина паузы равна минимальному количеству битов (3 бита), отделяющих последовательные сообщения. В отличие от других шинных систем, в CAN протоколе не используются подтверждающие сообщения. Вместо этого он сигнализирует о возникших ошибках передачи. Всего в CAN-протоколе реализовано пять механизмов проверки на наличие ошибок. Флаг ошибки - это сообщение, содержащее 6 доминантных бит подряд. Другие узлы, приняв такую последовательность, также могут передать флаг ошибки. Поэтому максимальная длина этого поля может достигать 12 доминантных бит. Завершается кадр ошибки ограничителем флага ошибки из 8 рецессивных бит, после стандартной паузы (3 бита), прерванная кадром ошибки передача должна быть повторена. Первые три алгоритма контроля реализованы на уровне сообщений: Циклический контроль. Контролируемые поля кадра от SOF до CRC. При использовании этого метода в конце передачи добавляются биты циклического избыточного кода. При приеме сообщения происходит его повторное вычисление и сравнение с полученным кодом циклического контроля. Если эти два значения не совпадают, то выявляется ошибка CRC. Контроль кадра. Проверяется соответствие структуры передаваемого кадра его фиксированному формату и размеру. Ошибки, которые могут возникнуть при проверке кадра, получили название "ошибки формата". Ошибки подтверждения. Как уже ранее было сказано, принятые кадры подтверждаются всеми приемниками. Если передатчик не получил никакого подтверждения, то это может означать, что приемники обнаружили ошибку (искажено поле АСК), либо приемники вообще отсутствуют в сети. Следующие два алгоритма определения ошибок реализованы в протоколе CAN на битовом уровне: Мониторинг шины. Одна из особенностей CAN сети состоит в том, что передающий узел может контролировать свой собственный сигнал на шине во время передачи. Таким образом, каждый узел может наблюдать за уровнем сигнала на шине и определять различие переданного и принятого бита. Расхождение сигналов в поле арбитража требует прекращения передачи, а расхождение в других полях кадра генерирует ошибку. Заполнение битами. В CAN используется сигнальный код NRZ. Однако, если подряд идет слишком много битов с одним и тем же значением, то возможен сбой синхронизации. Если в сообщении подряд идут пять битов с одинаковым значением, то передатчик автоматически вставляет дополнительный бит. Этот бит автоматически удаляется из сообщения приемниками. Если будет получено шесть последовательных битов с одним и тем же значением, то по CAN протоколу это считается ошибкой. Если в течение передачи кадра хотя бы одна станция обнаружит ошибку по любому из алгоритмов контроля (локальная ошибка), то она передает кадр ошибки, который аварийно завершает текущую передачу. В этом случае все узлы сети не обрабатывают принятое сообщение, чем достигается непротиворечивость данных во всей сети. Узлы сети, не обнаружившие ошибку, после приема кадра ошибки должны повторить передачу кадра ошибки (глобализация ошибки), поэтому максимальная длина этого поля может достигать 12 доминантных бит. Завершается кадр ошибки ограничителем флага ошибки из 8 рецессивных бит, после стандартной паузы (3 бита), прерванная кадром ошибки передача должна быть повторена. Как правило, повторная передача начинается в течение периода времени, соответствующего передаче 23 битов, отсчитываемого с момента обнаружения ошибки. Для реализации процедур самоконтроля каждый узел CAN сети содержит два счетчика: счетчик ошибок приема (REC) и счетчик ошибок передачи (TEC). Счетчики автоматически инкрементируются после обнаружения каждой ошибки и декрементируются после корректной передачи или приема кадра. В зависимости от состояния счетчиков ошибок узел может находиться в одном из трех состояний: активной ошибки, пассивной ошибки, отключен от шины. Состояние активной ошибки является основным для узла CAN сети и предполагает его нормальное функционирование. При обнаружении ошибки в этом состоянии узел посылает кадр активной ошибки (6 доминантных бит). Состояние активной ошибки будет продолжаться до тех пор, пока число ошибок в любом из счетчиков не превышает 127. Если число ошибок превышает 96, микроконтроллеру узла передается сообщение о критическом числе ошибок. При числе ошибок более 127, но менее 256 узел переходит в состояние пассивной ошибки. Состояние пассивной ошибки свидетельствует о часто повторяющихся ошибках. Узел из этого состояния может самостоятельно вернуться к активной ошибке, если число ошибок в счетчиках станет менее 128. При обнаружении очередной ошибки узел имеет право передать только кадр пассивной ошибки (6 рецессивных бит), который не может изменить текущую передачу любого другого узла. При повторении прерванной передачи этого узла должна быть сделана дополнительная пауза (8 рецессивных бит) для того, чтобы не мешать передаче кадров других узлов. Если число ошибок в любом из счетчиков превысит 255, узел должен отключиться от шины (на практике REC содержит только 8 дв. разрядов и поэтому число ошибок приема не может превысить этот порог). Самостоятельно CAN контроллер узла не может вернуться в рабочее состояние. Если произведен внешний сброс, CAN контроллер возвращается в состояние активной ошибки и после паузы 128х11 (1408) может передавать сообщения. CAN протокол определяет правила накопления числа ошибок в счетчиках REC и TEC. В зависимости от вида ошибки увеличение числа ошибок в счетчиках может быть от 1 до 8 при обнаружении однократной ошибки. Декремент содержимого счетчиков в состоянии активной ошибки производится всегда только на 1. Это позволяет присваивать разные веса различным ошибкам. Например, обнаружение ошибки при приеме увеличивает REC на единицу одновременно с отправкой кадра активной ошибки; если принимается доминантный бит после отправки узлом кадра активной ошибки, REC увеличивается на 8, т.к это означает, что только данный узел обнаружил ошибку. Успешный прием кадра узлом уменьшает REC (если он был не нулевым) на 1 в состоянии активной ошибки; если узел был в состоянии пассивной ошибки, в REC устанавливается величина от 119 до 127 (т.е. при TEC менее 128 узел перейдет в состояние активной ошибки). Любой узел может также послать кадр перегрузки (overload frame), если, во-первых, он не успевает обрабатывать поступающие сообщения и не может обеспечить прием следующего сообщения, во-вторых, при приеме доминантных бит в паузе между кадрами (это может означать потерю синхронизации при приеме). Кадр перегрузки имеет такой же формат, как и кадр ошибки, но передается всегда только после завершения приема кадра. А кадр ошибки может быть передан только в процессе передачи кадра. Кадр перегрузки не увеличивает состояние счетчиков ошибок и не приводит к повторной передаче кадров. Допускается передача узлом не более 2 кадров перегрузки подряд. В соответствии со всеми процедурами контроля: передача кадра считается успешной, если не обнаружено ошибок до конца поля EOF; прием кадра считается успешным, если не обнаружено ошибок и в течение межкадрового интервала (3 бита после EOF). Необходимо помнить, что CAN протокол не содержит эффективных средств контроля и восстановления искаженных данных кроме процедуры контроля CRC. Процедуры LLC не предусмотрены, несмотря на высокую помехоустойчивость возможны выпадения и вставки. Если необходимы дополнительные средства контроля данных, они должны реализовываться HLP протоколами. В настоящее время выпускают CAN контроллеры, которые поддерживают одну из трех версий протокола. Версия CAN 2.0A поддерживает работу только с кадрами стандартного формата, имеющими 11-битный идентификатор. CAN 2.0B passive обеспечивает передачу кадров стандартного формата, а прием и обработку кадров и стандартного формата, и расширенного формата с 29-битным идентификатором. CAN 2.0B active обеспечивает обработку кадров обоих форматов. Рис.1. Архитектура CAN контроллера Очевидно, что CAN контроллер должен содержать буферные ЗУ и для передаваемых данных, и для принимаемых данных. Реализация процедур CAN протокола, как правило, производится аппаратно с передачей через трансивер выходных сигналов узла (Tx) и входных сигналов с шины (Rx). Приемный фильтр аппаратно производит селективную запись принимаемых кадров по их идентификаторам в буферное ЗУ. Предполагается, что буфер передачи должен обеспечивать хранение, по крайней мере, одного сообщения, а буфер приема - не менее двух сообщений. Чаще всего CAN контроллеры имеют больший объем буферных ЗУ. Доступ к данным в буферных ЗУ может производиться по алгоритму FIFO либо в более сложных реализациях с учетом уровня приоритета, определяемого идентификатором. Интерфейс CAN контроллера с управляющим микроконтроллером узла - стандартный. Через этот интерфейс производится настройка параметров, режимов, приемного фильтра и т.п., а также обмен данными с CAN шиной. В настоящее время производится достаточно большое число управляющих микроконтроллеров, которые содержат встроенные средства для обмена данными по CAN сети. В связи с тем, что CAN протокол определяет только процедуры физического и MAC уровней, а построение сети требует решения и других задач, связанных, например, с процедурами LLC, процедурами автоматического выбора параметров и режимов при инициализации работы узлов, разработаны так называемые CAN HLP протоколы. К настоящему времени известно уже более четырех десятков CAN HLP. Среди CAN HLP наибольшее распространение в системах промышленной автоматизации получили четыре, поддерживаемых ассоциацией CiA: CAL/CANopen, CAN Kingdom, DeviceNet и SDS. 3.2 Сети PROFIBUS Комплекс коммуникационных средств для решения задач автоматизации SIMATIC NET (Siemens) содержит три самостоятельных технологии передачи данных для разных уровней управления: AS-интерфейс, сеть Profibus, сеть Industrial Ethernet. Области применения каждой технологии показаны на рис.2. Industrial Ethernet - технология классических компьютерных сетей и на верхнем уровне управления решает задачи информационного взаимодействия подсистем управления. AS-интерфейс с упрощенными алгоритмами организации передачи данных предназначен для обеспечения связи между двухпозиционными элементами локальных систем управления: датчиками, исполнительными устройствами, контроллерами нижнего уровня и т.п. Profibus содержат средства для реализации и технического взаимодействия локальных систем управления, и информационного взаимодействия подсистем управления. 3.2.1 AS-интерфейсAS-интерфейс (международный стандарт EN 50 295) реализует обмен данными следующим образом:AS-интерфейс является системой с одним ведущим устройством. Это устройство опрашивает поочерёдно все ведомые, ожидая от каждого ответ. Максимальное число ведомых устройств - 31, цикл опроса - 5 мс.Адрес ведомого устройства является его идентификатором. Присвоение адреса происходит в системе AS-интерфейса только один раз.Рис.2. Коммуникационные средства SIMATIC NETУстановку адреса можно выполнить либо с помощью специального модуля задания сетевых адресов, или с помощью ведущего устройства. Адрес постоянно хранится в ведомом устройстве.Ведущее устройство контролирует сигналы в линии связи, а также передаваемые данные и распознаёт ошибки передачи или выход из строя ведомых.Замена или добавление ведомых устройств в режиме нормальной работы не окажет влияние на обмен данными с другими ведомыми устройствами.Физические характеристики интерфейса:2-жильный кабель для передачи сигналов и подачи напряжения питания. Мощность, которая может быть подана на ведомое устройство, зависит от используемого блока питания AS-интерфейса. Для выполнения соединений предлагается кабель специального типа, исключающий подключение с неправильной полярностью и позволяющий производить подключение пользовательских модулей AS-интерфейса методом прокалывания оболочки кабеля.Древовидная топология сети при длине кабеля до 100 м. Древовидная топология AS-интерфейса позволяет использовать любую точку сегмента кабеля как начало новой ветви. Суммарная длина всех сегментов может достигать 100 м.Сигналы физического уровня передаются по протоколу RS485 со скоростью 31,25 кбит/с.В AS-интерфейсе используются сообщения с постоянной длиной. Отпадает необходимость в сложных процедурах управления передачей и установления длины сообщений или формата данных. Это позволяет ведущему устройству поочерёдно опрашивать все ведомые устройства за 5 мс и обновлять данные как на ведущем, так и на ведомых устройствах в пределах этого цикла. Ведомые устройства являются каналами ввода и вывода AS-интерфейса. Они активны только тогда, когда вызываются ведущим устройством и выполняют определённые действия или передают ответы на ведущее устройство по его команде. Каждое стандартное ведомое устройство может принимать 4 бита данных и передавать также 4 бита.В системах SIMATIC роль ведущих устройств играют коммуникационные процессоры (CP), которые управляют обменом данных, или системы распределенного ввода/вывода (шлюзы, обеспечивающие доступ к исполнительным механизмам и датчикам, например, из PROFIBUS DP).3.2.2 Сеть Profibus-DP Технологии сетей PROFIBUS (Siemens) подразделяются на 3 протокола: DP, FMS и PA. Profibus-DP оптимизирован для быстрого обмена данными между системами автоматизации и децентрализованной периферией. FMS-сервисы (Fieldbus Message Specification) обеспечивают большую гибкость при передаче больших объемов данных. Profibus-DP и Profibus-FMS (стандарт EN 50170) применяют одинаковую технику передачи и единый протокол доступа к шине и поэтому могут работать через общий кабель. PROFIBUS-PA - специальная концепция, позволяющая подключать датчики и приводы, находящиеся во взрывоопасной зоне. Физический уровень реализован по протоколу RS485 с соответствующими ограничениями по скорости и расстоянию. (Могут использоваться также волоконно-оптические или беспроводные каналы связи). Физически система PROFIBUS состоит из нагруженной с двух сторон активной линии - шинной структуры, которая обозначается, как сегмент шины RS485. Предельные параметры сети приведены в табл.1. К кабельному сегменту можно по стандарту RS-485 подключить до 32 устройств. Стандартные скорости: 9.6 кбит/с, 19.2 кбит/с, 45.45 кбит/с, 93.75 кбит/с, 187.5 кбит/с, 500 кбит/с, 1.5 Мбит/с, 3 Мбит/с, 6 Мбит/с или 12 Мбит/с. Таблица 1
В сетях PROFIBUS используются методы доступа “Token Bus" (сеть с передачей маркера или маркерное кольцо) для активных станций и “Master-Slave" (Ведущий-Ведомый) - для пассивных. Алгоритм доступа не зависит от конкретной среды передачи данных и реализуется следующим образом: Все активные узлы (ведущие) формируют логическое маркерное кольцо, имеющее фиксированный порядок, при этом каждый активный узел "знает" другие активные узлы и их порядок в логическом кольце (порядок не зависит от расположения активных узлов на шине). Право доступа к каналу передачи данных, так называемый “маркер”, передаётся от активного узла к активному узлу в порядке, определяемом логическим кольцом. Если узел получил маркер (адресованный именно ему), он может передавать пакеты. Время, отпущенное ему на передачу пакетов, определяется временем удержания маркера. Как только это время истекает, узлу разрешается передать только одно сообщение высокого приоритета. Если такое сообщение отсутствует, узел передаёт маркер следующему узлу в логическом кольце. Маркерные таймеры, по которым рассчитывается максимальное время удержания маркера, конфигурируются для всех активных узлов. Если активный узел обладает маркером и для него сконфигурированы соединения с пассивными узлами (соединения "ведущее устройство - ведомое устройство"), производится опрос пассивных узлов (например, считывание значений) или передача данных на эти устройства (например, передача команд). Пассивные узлы никогда не принимают маркер. При инициализации сети каждому узлу назначается адрес в диапазоне 0-126. Активные узлы, подключенные к PROFIBUS, упорядочены по возрастанию их адреса в логическом маркерном кольце. Время одного обращения маркера через всех активных участников называется временем обращения маркера. Устанавливаемое заданное время обращения маркера Ttr (Time target rotation) определяет максимально разрешенное время обращения маркера. Адреса всех имеющихся на шине активных узлов заносятся в LAS (List of Active Station - список активных станций). Для управления маркером при этом особенно важны адреса предыдущей станции PS (Previous Station), от которой маркер поступает, и следующей станции NS (Next Station), которой маркер передается. LAS также нужен, чтобы при текущей работе исключать из кольца вышедших из строя или дефектных активных участников и, соответственно, принимать вновь появившихся участников без помех текущему обмену данными по шине. Метод Master-Slave дает возможность мастеру (активному узлу), который имеет право прямой передачи, опрашивать назначенных ему Slaves (пассивных узлов). Мастер при этом имеет возможность передавать и принимать сообщения от Slave. Цикл обмена между DP-Master и одним DP-Slave состоит из кадра запроса (Request Frame), отправляемого DP-Master, и передаваемого DP-Slave ответа или кадра подтверждения (Response Frame). При инициализации сети должны согласовано задаваться различные временные параметры, необходимые для контроля работы сети по тайм-аутам. При обмене данными DP-Slave реагирует на кадры-запросы Data_Exchange DP-Master (класс 1), который его параметрировал и конфигурировал. Другие сообщения DP-Slave не обрабатывает. Внутри пользовательских данных нет дополнительных управляющих или структурных элементов для описания передаваемых данных, то есть передаются чистые пользовательские данные. С помощью кадров запрос-ответ можно обмениваться данными между DP-Master и DP-Slave в обоих направлениях объемом до 244 байт. Форматы кадров канального уровня: Кадр с фиксированной длиной
Кадр с фиксированной длиной поля данных
Кадр с переменной длиной поля данных
Кадр квитирования
Кадр-token (маркер)
SC (Single Character) отдельный символ, используется только для квитирования (SC = E5h); SD1-SD4 (Start Delimiter) стартовый байт для отличия различных форматов (SD1 = 10h, SD2 = 68h, SD3 = A2h, SD4 = DCh); LE / LEr (LEngth) байт длины, указывает длину информационных полей для кадров с переменной длиной; DA (Destination Adress) байт адреса узла - приемника; SA (Source Adress) байт адреса узла - источника; FC (Frame Control) контрольный байт содержит информацию о службе для данного сообщения и приоритет сообщения; Data Unit поле данных, может также содержать возможные расширения адреса; FCS (Frame Check Sequence) проверочный байт, содержит контрольную сумму; ED (End Delimiter) оконечный байт, указывает на завершение кадра (ED = 16h). При приеме кадров могут быть распознаны следующие ошибки: ошибки символьного формата (четность, переполнение, ошибка кадра); ошибки протокола; ошибки разделителей начала и окончания; ошибки байта проверки кадра; ошибки длины кадра. Кадр, у которого обнаружена ошибка, повторяется, по крайней мере, один раз. Имеется возможность повторять кадры до 8 раз (шинный параметр Retry). Наряду с передачей данных "точка-точка", могут осуществляться также передачи во многие точки Broadcast и Multicast. При коммуникациях Broadcast активный участник посылает сообщение всем остальным участникам (Master и Slave). Прием данных не квитируется. При коммуникациях Multicast активный узел посылает сообщение группе участников (Master и Slave). Прием данных также не квитируется. В некоторых случаях необходимо, чтобы шинный цикл DP по времени оставался постоянным (рис.3) и, следовательно, обмен данными должен происходить строго периодически. Это находит применение, например, в технике электроприводов для самосинхронизации нескольких приводов. В отличие от нормального DP цикла при постоянном по времени цикле в DP-Master резервируется определенная часть времени для ациклической передачи данных. Постоянный по времени DP-цикл может быть установлен только в системе с одним мастером. Рис.3. Циклический обмен в PROFIBUS DP При спроектированной перекрестной связи DP-Slave отвечает не кадром one-to-one (Slave > Master), а специальным кадром one-to-many (Slave > m). Таким образом, входные данные Slave, содержащиеся в ответном кадре, предоставляются не только соответствующему мастеру, но и всем узлам шины. Интерфейс PROFIBUS DP в функциональных модулях SIMATIC S7 (Siemens) может поддерживаться встроенными интерфейсами модулей, с помощью дополнительных интерфейсных DP-модулей или коммуникационных процессоров. Таблица 2 Службы с различными алгоритмами обмена данными (табл.2) вызываются через точки доступа к службе SAP (Service Access Point) из вышестоящего уровня. В PROFIBUS-FMS используются эти точки доступа для адресации логических коммуникационных связей. В PROFIBUS-DP и PA применяемые точки доступа строго упорядочены. У всех активных и пассивных участников можно использовать параллельно несколько точек доступа. Различаются точки доступа источника SSAP (Source Service Access Point) и точки доступа цели DSAP (Destination Service Access Point). DP-Slave в системе SIMATIC S7 (Siemens) по структуре и функциям подразделяются на 3 группы: Компактные DP-Slave, модули с фиксированной структурой портов ввода/вывода, доступных для передачи данных. Модульные DP-Slave,. модули с программируемой структурой портов ввода/вывода, доступных для передачи данных. Интеллектуальные DP-Slave (I-Slave), как правило, контроллерные модули с передачей данных не из портов ввода/вывода, а из доступного в PROFIBUS адресного пространства ОЗУ. Для решения типовых коммуникационных задач в PROFIBUS используются профили, объединяющие в единый комплекс необходимый набор сетевых средств. Профили также указывают набор коммуникационных функций, которые должны поддерживать используемые технические средства. Для PROFIBUS FMS определены следующие профили: Коммуникации между контроллерами (профиль 3.002). Этот коммуникационный профиль устанавливает, какие FMS-службы применяются для коммуникаций между контроллерами (PLC). Установлены службы, параметры и типы данных, которые каждый PLC должен поддерживать. Профиль для автоматизации зданий (профиль 3.011). Это отраслевой (специализированный) профиль и основа для многих открытых стандартов в автоматизации зданий. Описывает, как осуществляется обмен, управление, регулирование, обслуживание, обработка и архивирование сигналов в системах автоматизации зданий через FMS. Коммутационные низковольтные приборы (профиль 3.032) Этот профиль определяет алгоритмы работы низковольтных коммутационных приборов при коммуникациях через FMS. Установлены следующие профили PROFIBUS-DP: Профиль NC/RC (профиль 3.052). Профиль описывает управление и обслуживание роботов через PROFIBUS-DP. На основании конкретной блок-схемы алгоритма описывается движение и программное управление роботом. Профиль Encoder для преобразователя угол-код (профиль 3.062). Профиль описывает подключение Encoder к PROFIBUS-DP. Определены основные и дополнительные функции такие, как масштабирование сигналов и расширенная диагностика. Профиль для приводов с изменяемым числом оборотов (профиль 3.072). Ведущие производители приводов разработали общий PROFIDRIVE-профиль. Профиль устанавливает, как приводы параметрируются и передают заданные и истинные значения, содержатся необходимые установки для вида работы регуляторов скорости и позиционирования. Профиль устанавливает основные функции приводов и дает свободное пространство для пользовательских расширений. Профиль содержит описание пользовательских функций DP или альтернативных функций FMS. Профиль для управления и наблюдения HMI (Human Machine Interface) (профиль 3.082). Профиль устанавливает для средств HMI правила подключения через PROFIBUS-DP к компонентам автоматизации. Профиль использует для коммуникаций расширенные функции PROFIBUS-DP. Профиль для защищенной от ошибок передачи данных через PROFIBUS-DP (профиль 3.092) В этом профиле устанавливаются дополнительные механизмы защиты данных для коммуникаций с защищенными от ошибок компонентами. В целом, коммуникационные технологии Profibus являются завершенными интерфейсными средствами для систем автоматизации. Эта завершенность, с одной стороны, существенно облегчает их применение. Но, с другой стороны, снижает функциональную гибкость и возможность изменения алгоритмов работы в соответствии с какими-либо требованиями. Интерфейсы Profibus реализованы в полной мере в функциональных модулях различного назначения, предлагаемых фирмой Siemens для решения задач автоматизации в промышленности. Список литературы1. Уолрэнд Дж. Телекоммуникационные и компьютерные сети. - М.: Постмаркет, 2007. 2. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. - СПб.: "Питер", 2004. 3. Новиков Ю.В., Кондратенко С.В. Основы локальных сетей. - М.: 2005. 4. Олифер В.Г., Олифер Н.А. Основы сетей передачи данных. - СПб.: "Питер", 2005. 5. Хамбракен Д. Компьютерные сети: Пер. с англ. - М.: ДМК Пресс, 2004. 6. Новиков Ю.В., Кондратенко С.В. Локальные сети. Архитектура, алгоритмы, проектирование. - М.: ЭКОМ, 2009. 7. Нанс Б. Компьютерные сети: Пер. с англ. - М.: "БИНОМ", 2006. |
|
© 2007 |
|