![]() |
РУБРИКИ |
Приёмник для радиоуправляемой игрушки |
РЕКЛАМА |
|
Приёмник для радиоуправляемой игрушкиПриёмник для радиоуправляемой игрушки2 ВведениеСегодня электронная автоматика оказывает огромное влияние на различные стороны жизни и деятельности человека. С электронной автоматикой мы имеем дело практически на каждом шагу. В наших домах она управляет электронагревательными приборами, холодильниками аудио - и видеоаппаратурой, телефонными аппаратами, телевизорами и многими другими устройствами бытового назначения. Электронные и электронно-механические часы, калькуляторы и персональные компьютеры прочно вошли в наш быт. В универсамах электронные автоматы быстро и точно взвешивают и оценивают покупки, на перекрёстках городских улиц они управляют движением транспортных средств, включают освещение в вечерние время суток и выключают его с наступлением рассвета. Электронные автоматы выполняют ответственную работу на земле, в воздухе в космосе - управляют сложнейшими производственными процессами, реакторами атомных электростанций, бортовой аппаратуры современных самолётов, орбитальных и межпланетных станций. О сущности электронной автоматики и многообразии её применения можно узнать из многочисленных популярных и специальных изданий. Благодаря широкому развитию радиоэлектронной аппаратуры, стало возможным роботизировать производство. Электронные автоматы и станки с программным управлением значительно облегчают и ускоряют производство. К тому же они не устают и всегда точны в своей работе, человеку остаётся лишь дать команду машине и она будет её выполнять. Значительную часть электронных автоматов образуют три взаимосвязанных компонента: датчик, усилитель и исполнительное устройство. Если автомат должен реагировать, скажем, на свет его датчиком может быть, например фотодиод, преобразующий свет или его интенсивность в электрически сигнал. Усилитель, функцию которого может выполнять, например транзистор или интегральная схема усиливает сигнал датчика до определённого, заранее обусловленного уровня, при котором срабатывает исполнительное устройство, включающее ту или иную внешнюю нагрузку. Существует множество различных электронных устройств, используемых нами в повседневной жизни, пользуясь которыми мы часто недооцениваем их роль в нашей жизни, а просто используем их, не задумываясь о том, как они устроены. Можно с уверенностью сказать, что в настоящее время современному человеку нельзя обойтись без электронной аппаратуры. 1. Общая часть1.1. Анализ технического заданияПриёмники имеющихся в продажи радиоуправляемых игрушек азиатского производства не отличаются хорошими характеристиками и высокой надёжностью. Между тем применяемые в таких игрушках специализированные микросхемы кодирования и декодирования команд обладают неплохим качеством и удобным алгоритмом работы. Воспользовавшись подобной микросхемой, извлечённой из неисправного игрушечного автомобиля, можно изготовить на её основе значительно более надёжный в работе приёмник, оставшийся совместимым с фирменным передатчиком команд радиоуправления. Приёмник можно использовать как вместо отказавшего, так и для управления движущимися моделями собственной конструкции. 1.2. Описание схемы электрической принципиальной приёмника для радиоуправляемой игрушкиСигнал с частотой 27,12 МГц принимает сверхрегенеративный детектор с принудительным гашением колебаний на транзисторе VT1. Генератор частоты гашения собран на КМОП микросхеме DD1. Она представляет собой экономичный мультивибратор с дополнительным D-триггером, делящим на два частоту колебаний мультивибратора, заданную элементами R1 и С2. Далее следует декодер DA1, включённый по типовой схеме. Его чувствительность к сигналу, поданного на вход основного элемента DA1.2. (выход 3), равна 300 мВ. Усилитель DA1.1. и DA1.3. повышают её до 0,15 мВ. Тактовая частота декодера, которую устанавливают подборкой резистора R11, не должна отличаться от такой же частоты кодера более чем на 25%. Вместо транзисторных усилителей тока для управления ходовым и рулевым электродвигателями применены специализированные микросхемы DA2 и DA3. Их максимальный выходной ток 0,7 А вполне достаточен для работы большинства электродвигателей, применяемых в игрушках. 2. Расчётная часть2.1. Расчёт надёжности приёмника для радиоуправляемой игрушкиРасчёт надёжности производится на этапе проектирования. Для расчёта задаются ориентировочные данные. В качестве температуры окружающей среды может быть принято среднее значение температуры внутри блока. Для большинства маломощных полупроводниковых устройств она не превышает 40`C. Для различных элементов при расчётах надёжности служат различные параметры. Для резисторов и транзисторов это допустимая мощность рассеивания, для конденсаторов допустимое напряжение, для диодов прямой ток. Коэффициенты нагрузок для элементов каждого типа могут быть определены по величине напряжения источника питания. Так для конденсаторов номинальное напряжение рекомендуется брать в 1,5 - 2 раза выше напряжения источника питания. Рекомендуемые коэффициенты приведены в таблице № 1. Таблица № 1.
Допустимую мощность рассеивания резисторов можно определить по принятым обозначениям на схеме.
Допустимую мощность рассеивания следует брать в качестве номинального параметра. Фактическое значение параметра надо брать в половину меньше согласно таблице №1. Для конденсаторов номинальным параметром в расчёте надежности считаются допустимые напряжения на обкладках конденсатора. В большинстве схем этот параметр не указывается. Его следует выбирать исходя из напряжения источника питания. Uн, для конденсатора следует брать в два раза больше (в полтора) напряжения источника питания. При этом следует учитывать, что согласно ГОСТу конденсаторы выпускаются на допустимое напряжение (в вольтах) 1; 1,6; 2,5; 3,2; 4; 6,3; 10; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 350. Конденсаторы на более высокое допустимое напряжение на обкладках, в схемах курсового и дипломного проектирования практически не применяются. Фактическое значение (Uф) для конденсаторов в расчёте надежности следует брать в половину меньше выбранного. Для транзисторов номинальный параметр Pк допустимое значение следует брать из справочников. Для диодов контролируемый параметр величина прямого тока Iпр. Брать в справочниках. Фактическое значение этих параметров следует брать исходя из рекомендации таблицы №1. При увеличении коэффициента нагрузки интенсивность отказов увеличивается. Она так же возрастает, если элемент эксплуатируется в более жестких условиях: при повышенной температуре, влажности, при ударах и вибрациях. В стационарной аппаратуре, работающей в отапливаемых помещениях, наибольшее влияние на надёжность аппаратуры оказывает температура. Определяя интенсивность отказов при t?=20?С, значения приведены в таблице №2. интенсивность отказов обозначается ло. Измеряется ло в (1/час) Таблица № 2.
Порядок расчёта. В таблицу № 3 заносятся данные из принципиальной схемы. Таблица заполняется по колонкам. В первую колонку заносится наименование элемента, его тип определяется по схеме. Часто в схемах не указывается тип конденсаторов, а даётся только его ёмкость. В этом случае следует по емкости, и выбирать подходящий тип конденсатора в справочнике. Тип элемента заносится во вторую колонку. Однотипные элементы записываются одной строкой, а их число заносится в колонку 4. Микросхемы вне зависимости от типа объединяются в одну группу и записываются в одну строку. Это связанно с тем, что у них независимо от типа одинаковая интенсивность отказов, и они могут работать в достаточно широком диапазоне температур. (Большие интегральные схемы не применяются в курсовых и дипломных проектах). В колонку 4 заносится температура окружающей среды. Её надо определять, исходя из назначения прибора или устройства. Если устройство работает в отапливаемом помещении и не имеет мощных транзисторов, температуру можно брать 40?С. Далее следует заполнить колонку 6, пользуясь теми рекомендациями, которые были даны выше. Студенту, как правило, не известны фактические параметры элементов. Выбирать их надо, руководствуясь рекомендациями таблицы 1. Коэффициенты нагрузок. Для транзисторов: kн = Рф/Ркдоп = Рф/Рн (1) Для диодов: kн = Iф/Iпрср = Iф/Iн (2) Для конденсаторов: kн = Uф/Uн = Uф/(Uu·n) ? 2 (3) Для резисторов: kн = Рф/Рн (4) Зная kн определяем фактическое значение параметра и заполняем колонки 5 и 8. Если kн в таблице для элемента не указанно, то следует ставить прочерк или брать kн = 0,5. Колонка 7 заполняется по справочнику. Далее определяется коэффициент б, который показывает, как влияет на интенсивность отказов окружающая элемент температура в связи с коэффициентом нагрузки. Находят б по таблице № 4. Таблица № 4
Для германиевых полупроводниковых диодов б брать таким, как у кремневых. Если в таблице нет тех элементов, которые есть в конкретной схеме, следует спросить у преподавателя, как быть. Колонка 10 заполняется из соответствующей таблицы №2 (интенсивность отказов ло для температуры +20?С) Колонка 11 лi = б · ло Колонка 12 лс = лi · n, где n - количество элементов. Если изделие испытывает воздействие ударных нагрузок или реагирует на влажность, атмосферное давление, следует учесть это влияние. В этом случае лi в колонке 11 лi = ло · б · б1 · б2 · б3 где б - коэффициент влияния температуры; б1 - коэффициент влияния механических воздействий; б2 - коэффициент влияния влажности; б3 - коэффициент влияния атмосферного давления. Значения б1, б2, б3 определяются по нижеследующим таблицам. Таблица № 5.
Коэффициент влияния влажности. Таблица № 6.
Коэффициент влияния атмосферного давления. Таблица № 7.
Когда колонка 12 заполнена, можно рассчитать среднее время наработки на отказ Тср. Для этого суммируют все значения колонки 12, получая У лс, тогда Тср = 1/ У лс (час) Исходя из таблицы №3 получаем У лс = 9,747 · 10?6, от сюда получаем Тср = 1 · 10?6 / 9,747 = 102595,7 часов. По приведённому расчёту надёжности среднее время наработки на отказ приёмника для радиоуправляемой игрушки составляет 102595,7 часов. 3. Конструкторская часть3.1. Обоснование выбора элементов3.1.1. Обоснование выбора резисторов В моём приёмнике для радиоуправляемой игрушки используются резисторы типа МЛТ. Металлопленочные резисторы (МЛТ) содержат резистивный элемент в виде очень тонкой (десятки доли микрометра) металлической плёнки, осаждённой на основании из керамики, стекла, слоистого пластика, ситалла или другого изоляционного материала. Металлоплёночные резисторы характеризуются высокой стабильностью параметров, слабой зависимостью сопротивления от частоты и напряжения. Обладают высокой надёжностью. Недостатком некоторых металлоплёночных резисторов является пониженная надёжность при повышении номинальной мощности рассеивания. Температурный коэффициент стабильности (ТКС) резисторов типа МЛТ и резисторов типа ОМЛТ не превышает 0,02% на 1?С. Уровень шумов резисторов группы А не более 1мкВ / В, группы Б не более 5 мкВ / В. Опираясь на изученную литературу, приведённую выше, резисторы типа металлоплёночные (МЛТ), подходят для использования в приёмнике для радиоуправляемой игрушки. 3.1.2. Обоснование выбора конденсаторовМною выбраны керамические конденсаторы серии КМ (конденсатор монолитный). Керамические конденсаторы представляют собой пластинки, трубки из керамики с нанесёнными на них электродами из металла. Для зашиты от внешних воздействий эти конденсаторы окрашивают эмалями и герметизируют, покрывая эпоксидными компаундами, либо заключая в специальный корпус. Керамические конденсаторы широко применяются в качестве контурных, блокировочных, разделительных и других конденсаторов. Керамические конденсаторы с диэлектриком из высококачественной керамики характеризуются высокой электрической надёжностью и сравнительно небольшой стоимостью. Сопротивление этих конденсаторов при 20?С превышает 5….10 ГОм, тангенс угла потерь на частотах порядка 1 мГц равен 0,0012….0,0015. Конденсаторы с диэлектриком из низкокачественной керамики отличаются большой удельной ёмкостью и малой стоимостью. Основные параметры керамических конденсаторов серии КМ приведены в таблице №1. Таблица № 1.
Так же в приёмнике применены электролитические конденсаторы типа К50-6. Электролитические конденсаторы обладают большой удельной ёмкостью и энергией, запасаемой в сравнительно малых объёмах. К недостаткам конденсаторов этой группы относят нестабильность параметров, зависимость ёмкости от низких температур, резко ограниченный диапазон частот. Алюминиевые фольговые конденсаторы К50-6 рассчитаны на широкий диапазон ёмкостей и рабочих напряжений. Имеют цилиндрическую форму и выпускаются в трёх конструктивных вариантах - с гибкими проволочными выводами одинаковой длины (неполярные), с выводами разной длинны (короткий вывод плюсовой) и с запрессованными в пластмассу лепестковыми выводами. В первых двух вариантах торцы заливают герметиком, в третьем вставляют пластмассовую крышку. Во всех случаях цилиндры у торцов закатывают по внешней поверхности. По сравнению с другими конденсаторами, конденсаторы типа К50-6, более низковольтные и имеют широкий диапазон номинальной ёмкости (до 4000мкФ). Параметры электролитических конденсаторов типа К50-6 приведены в таблице № 2. Таблица № 2.
· полупроводниковые приборы и микросхемы не следует располагать близко к элементам, выделяющим большое количество теплоты, а также к источникам сильных магнитных полей (постоянным магнитам, трансформаторам и др.); · должна быть предусмотрена возможность конвекции воздуха в зоне расположения элементов, выделяющих большое количество теплоты; · должна быть предусмотрена возможность лёгкого доступа к элементам, которые подбирают при регулировании схемы. Если элемент имеет электропроводной корпус и под корпусом проходит проводник, то необходимо предусмотреть изоляцию корпуса или проводника. Изоляцию можно осуществлять надеванием на корпус элемента трубок из изоляционного материала, нанесением тонкого слоя эпоксидной смолы на плату в зоне расположения корпуса (эпоксидная маска), наклеиванием на плату тонких изоляционных прокладок. В зависимости от конструкции конкретного типа элемента и характера механических воздействий, действующих при эксплуатации (частота и амплитуда вибрации, значение и длительность ударных перегрузок и др.), ряд элементов нельзя закреплять только пайкой за выводы - их нужно крепить дополнительно за корпус. Крепление за корпус в зависимости от конструкции и массы элементов можно производить приклейкой к плате специальными мастиками или клеями, прилакировкой в процессе влагозащиты печатного узла, заливкой компаундом, привязкой нитками или проводом, с помощью скоб, держателей и другими методами. Если микросхема выделяет большое количество теплоты и находится при повышенной температуре, то существует опасность нагрева корпуса микросхемы, выше допустимой температуры. В этом случае под корпусами микросхемы устанавливают теплоотводящую медную шину, концы которой должны плотно прилегать к корпусу изделия или другому элементу конструкции, способному отводить выделяемую микросхемой теплоты в окружающее пространство. Медная шина должна быть изолирована изоляционной прокладкой от печатных проводников, проходящих под микросхемой. По тем же причинам изоляционные прокладки нужно применять при установке микросхем. Вместо прокладок можно покрывать нижнюю поверхность корпуса микросхемы эпоксидной смолой. Зазор между корпусами должен быть не менее 1,5 мм (в одном из направлений). Указанный зазор необходим для возможности захвата микросхемы специальными устройствами при автоматической установке. Планарные корпуса нужно располагать длинной стороной вдоль направления конвекционного потока воздуха. При этом улучшается охлаждение микросхемы. Так как печатные платы имеют малые расстояния между проводниками, то воздействие влаги может привести к таким ухудшениям сопротивлениям изоляции, при которых будет нарушаться нормальная работа схемы. Поэтому печатные узлы, которые будут работать в сложных климатических условиях, необходимо покрывать слоем лака. Используемые для этого лаки должны иметь следующие свойства: а) хорошую адгезию к материалу платы и печатным проводникам; б) малую влагопоглощаемость; в) большое сопротивление изоляции; г) способность быстро высыхать при невысокой плюсовой температуре; д) отсутствие растрескивания в диапазоне рабочих температур. Наиболее часто для покрытия печатных плат используют лак УР 231. Однако следует отметись, что тонкая плёнка лака не способна надёжно защитить плату от влаги при длительном воздействии, так как абсолютно влагонепоглощающих лаков не существует. Литература1. Пестриков В.М. Уроки радиотехники. - СПб.: КОРОНА Принт, 2000-592с.: ил. 2. Билибин К.И., Шахнов В.А. Конструкторско-технологическое проектирование электронной аппаратуры: Учеб. для техн. Вузов. 3. Угрюмов Е.П. Цифровая схемотехника. - СПб.: БХВ-Петербург, 2002. - 528с.: ил. 4. Петухов. Транзисторы и их зарубежные аналоги. - М.: РадиоСофт, 2004. - 544с. 5. Радио № 3, 2005 год. |
|
© 2007 |
|