![]() |
РУБРИКИ |
Радиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопии |
РЕКЛАМА |
|
Радиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопииРадиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопииМинистерство образования Республики Беларусь Белорусский государственный университет информатики и радиоэлектроники кафедра РЭС РЕФЕРАТ на тему: «Радиоволновые, радиационные методы контроля РЭСИ. Методы электронной микроскопии» МИНСК, 2008 Радиоволновый метод Радиоволновые методы основаны на взаимодействии электромагнитного поля в диапазоне длин волн от 1 до 100 мм с объектом контроля, преобразовании параметров поля в параметры электрического сигнала и передаче на регистри-рующий прибор или средства обработки информации. По первичному информативному параметру различают следующие СВЧ-методы: амплитудный, фазовый, амплитудно-фазовый, геометрический, времен-ной, спектральный, поляризационный, голографический. Область применения СВЧ-методов радиоволнового вида неразрушающего контроля приведен в таблице 1 и в ГОСТ 23480-79. Табл. 1 - Радиоволновые методы неразрушающего контроля
Примечание: ? - длина волны в контролируемом объект; L - размер раскрыва ан-тенны в направлении волнистости. Необходимым условием применения СВЧ-методов является соблюдение сле-дующих требований: - отношение наименьшего размера (кроме толщины) контролируемого объекта к наибольшему размеру раскрыва антенны преобразователя должно быть не ме-нее единицы; - наименьший размер минимально выявляемых дефектов должен не менее чем в три раза превышать величину шероховатости поверхности контролируе-мых объектов; - резонансные частоты спектра отраженного (рассеянного) излучения или напряженности магнитных полей материалов объекта и дефекта должны иметь различие, определяемое выбором конкретных типов регистрирующих устройств. Варианты схем расположения антенн преобразователя по отношению к объек-ту контроля приведены в таблице 1. Методы этого вида контроля позволяют определять толщину и обнару-жить внутренние и поверхностные дефекты в изделиях преимущественно из неметаллических материалов. Радиоволновая дефектоскопия дает возмож-ность с высокой точностью и производительностью измерять толщину диэ-лектрических покрытий на металлической подложке. В этом случае ампли-туда зондирующего сигнала представляет собой основной информационный параметр. Амплитуда проходящего через материал излучения уменьшается из-за многих причин, в том числе из-за наличия дефектов. Кроме этого, изменяются длина волны и ее фаза. Существуют три группы методов радиоволновой дефектоскопии: на прохож-дение, отражение и на рассеяние. Аппаратура радиоволнового метода обычно содержит генератор, работаю-щий в непрерывном или импульсном режиме, рупорные антенны, предназна-ченные для ввода энергии в изделие и прием прошедший или отраженной вол-ны, усилитель принятых сигналов и устройства для выработки командных сиг-налов, управляющих различного рода механизмами. При контроле фольгированных диэлектриков производят сканирование поверх-ности проверяемого образца направленным пучком микроволн с длиной волны 2 мм. В зависимости от информационно используемого параметра микроволн де-фектоскопы подразделяют на фазовые, амплитудно-фазовые, геометрические, поляризационные. Изменение относительно амплитуды волны отсчитывается на эталонном из-делии. Амплитудные дефектоскопы наиболее просты с точки зрения настройки и эксплуатации, но их применяют только для обнаружения достаточно больших дефектов, значительно влияющих на уровень принятого сигнала. Амплитудно-фазовые дефектоскопы позволяют обнаруживать дефекты, из-меняющие как амплитуду волны, так и ее фазу. Такие дефектоскопы способны давать достаточно полную информацию, например, о качестве заготовок фоль-гированных диэлектриков, предназначенных для изготовления отдельных слоев многослойных печатных плат. В поляризационных дефектоскопах фиксируют изменение плоскости поля-ризации волны при ее взаимодействии с различными неоднородностями. Эти дефектоскопы могут быть использованы для обнаружения скрытых дефектов в самих различных материалах, например, для исследования диэлектрической ани-зотропии и внутренних напряжений в диэлектрических материалах. Радиационные методы Под радиационными методами неразрушающего контроля понимается вид не-разрушающего контроля, основанный на регистрации и анализе проникающего ионизирующего излучения после взаимодействия с контролируемым объектом. В основе радиационных методов лежит получение дефектоскопичес-кой информации об объекте с помощью ионизирующего излучения, прохожде-ние которого через вещество сопровождается ионизацией атомов и молекул сре-ды. Результаты контроля определяются природой и свойствами используемого ионизирующего излучения, физико-химическими характеристиками контроли-руемых изделий, типом и свойствами детектора (регистратора), технологией кон-троля и квалификацией дефектоскопистов. Радиационные методы неразрушающего контроля предназначены для обна-ружения микроскопических нарушений сплошности материала контролируемых объектов, возникающих при их изготовлении (трещины, овалы, включения, ра-ковины и др.) Классификация радиационных МНК представлена на рис1. Методы электронной микроскопии (ЭМ) Электронная микроскопия основывается на взаимодействии электронов с энер-гиями 0,5 - 50 кэВ с веществом, при этом они претерпевают упругие и неупру-гие столкновения. Рассмотрим основные способы использования электронов при контроле тон-копленочных структур (см. рис.2) Таблица 1 - Схемы расположения антенн преобразователей по отношению к объекту контроля.
Обозначения: - антенна преобразователя; - нагрузка. 1 - СВЧ-генератор; 2 - объект контроля; 3 - СВЧ-приемник; 4 - линза для создания (квази) плоского фронта волны; 5 - линза для формирования радио-изображения; 6 - опорное (эталонное) плечо мостовых схем. Примечание: допускается применение комбинаций схем расположения антенн преобра-зователя по отношению к объекту контроля. Растровая электронная микроскопия (РЭМ). Сфокусированный пучок элект-ронов 1 (рис. 2) диаметром 2-10 нм с помощью отклоняющей системы 2 перемещается по поверхности образца, (либо диэлектрической пленки З1, либо полупроводника З-11.) Синхронно с этим пучком электронный пучок перемеща-ется по экрану электронно-лучевой трубки. Интенсивность электронного луча моделируется сигналом, поступающим с образца. Строчная и кадровая разверт-ка пучка электронов позволяют наблюдать на экране ЭЛТ определенную пло-щадь исследуемого образца. В качестве модулирующего сигнала можно исполь-зовать вторичные и отражательные электроны. Рисунок 1 - Классификация радиационных методов Рисунок 2 - Режимы работы растровой электронной микроскопии а) контраст в прошедших электронах; б) контраст во вторичных и отраженных электронах; в) контраст в наведенном токе (З11 - ус-ловно вынесен за пределы прибора). 1 - сфокусированный луч; 2 - отклоняющая система; 3 - объект исследования - диэлектричес-кая пленка; 4 - детектор вторичных и отраженных электронов; 5 -усилитель; 6 - генератор развертки; 7 - ЭЛТ; 8 - сетка детектора; 9 -отраженные электроны; 10 - вторичные электроны. Просвечивающая электронная микроскопия (ПЭМ) основана на поглоще-нии, дифракции электронов взаимодействия с атомами вещества. При этом про-шедший через пленку сигнал снимается с сопротивления, включаемого после-довательно с образцом З1. Для получения изображения на экране используются мощные линзы, располагаемые за образцом. Стороны образца должны быть плос-копараллельными, чистыми. Толщина образца должна быть много меньше дли-ны свободного пробега электронов и должна составлять 10.. 100 нм. ПЭМ позволяет определить: формы и размеры дислокаций, толщину образцов и профиль пленок. В настоящее время существуют ПЭ микроскопы до 3 МэВ. Сканирующая электронная микроскопия (СЭМ). Изображение формируется как за счет вторичных электронов, так и за счет отраженных электронов (рис. 2). Вторичные электроны позволяют определить химический состав образца, а отраженные - морфологию его поверхности. При подаче отрицательного потенциала - 50 В происходит запирание малоэнергетичных вторичных электронов и изображение на экране становится контрастным, поскольку грани, расположенные под отрицательным углом к детектору, не про-сматриваются вообще. Если на сетку детектора подать положительный потенци-ал (+250 В), то вторичные электроны собираются с поверхности всего образца, что смягчает контрастность изображения. Метод позволяет получить информа-цию о: - топологии исследуемой поверхности; - геометрическом рельефе; - структуре исследуемой поверхности; - коэффициенте вторичной эмиссии; - об изменении проводимости; - о местоположении и высоте потенциальных барьеров; - о распределении потенциала по поверхности и в поверхности (за счет заряда по поверхности при облучении электронами) при попадании сканирующего луча на поверхность полупроводниковых приборов в ней наводятся токи и напряжения, которые изменяют траектории вторичных электронов. Элементы ИМС с положительным потенциалом по сравнению с участками, имеющими более низкий потенциал, выглядят темными. Это обуславливается наличием замедляющих по- лей над участками образца с положительным потенциалом, которые приводят к уменьшению сигнала вторичных электронов. Потенциально-контрастные измерения дают только качественные результаты из-за того, что замедляющие поля зависят не только от геометрии и напряжения пятна, но и от распределения напряжения по всей поверхности образца; - большого разброса скоростей вторичных электронов; - потенциальный контраст накладывается на топографический и на кон- траст, связанный с неоднородностью состава материала образца. Режим наведенного (индуцированного электронно-лучевого тока). Электронный луч с большой энергией фокусируется на маленькой площади микросхемы и проникает через несколько слоев ее структуры, в результате в полупроводнике генерируются электронно-дырочные пары. Схема включения образца представлена на (рис.2, в). При соответствующих внешних напряжениях, приложенных к ИМС, измеряются токи обусловленные вновь рожденны-ми носителями заряда. Этот метод позволяет: - определить периметр р-n перехода. Форма периметра оказывает влияние на пробивные напряжения и токи утечки. Первичный электронный луч (2) (рис. 3 и 4) движется по поверхности образца (1) в направлениях х, и в зависимости от направления перемещения меняется значение индуцированного тока в р-n переходе. По фотографиям р-n перехода можно определить искажения периметра р-n перехода (рис.5). - определить места локального пробоя р-n перехода. При образовании локального пробоя р-n перехода в месте пробоя образуется лавинное умножение носителей тока (рис.6) Если первичный пучок электронов (1) попадает в эту область (3), то генерированные первичными электронами электронно-дырочные пары также умножаются в р-n переходе, в результате чего в данной точке будет зафиксировано увеличение сигнала и соответственно появление светлого пятна на изображении. Изменяя обратное смещение на р-n переходе, можно выявить момент образования пробоя, а проведя выявление структурных дефектов например с помощью селективного травления или с ПЭМ, можно сопоставить область пробоя с тем или иным дефектом. Рисунок 3 - Схема прохождения электронного луча Рисунок 4 - Изображение торцевого р-п-перехода с целью определения его периметра 1 - торцевой р-n переход; 2 - электронный луч; 3 - область генерации электронно-дырочных пар. Рисунок 4 - Изображение планарного р-п-перехода с целью определения его периметра 1 - планарный р-n переход; 2 - электронный луч; 3 - область генерации электронно-дырочных пар. Рисунок 5 - Искажения периметра планарного p-n-перехода сверху - наблюдать дефекты. Если в области р-n перехода находится дефект (4) (рис. 6), то при попадании первичного пучка электронов в область дефекта некоторая часть генерированных пар рекомбинирует на дефекте, и соответственно до границы р-n перехода дойдет меньшее число носителей, что уменьшит ток во внешней цепи. На фотографии р-n перехода эта область будет выглядеть более темной, чем остальной фон. Изменяя соотношение между глубиной залегания р-n перехода и проникновением первичных электронов можно зондировать элек-трическую активность дефектов, располагающихся на разной глубине. Наблю-дение дефектов можно проводить при обратных и прямых смещениях р-n пере-хода. Электронная оже-спектроскопия (ЭОС). Она состоит в получении и анализе спектра электронов, испускаемых атома-ми поверхностей при воздействии на него электронным лучом. Такие спектры несут информацию: - о химическом (элементном) составе и состоянии атомов поверхностных слоев; - о кристаллической структуре вещества; - о распределении примесей по поверхности и диффузионных слоях; Установка для оже-спектроскопии состоит из электронной пушки, энергоанализатора оже-электронов регистрирующей аппаратуры и вакуумной системы. Рисунок 6 - Изображение планарного p-n-перехода с целью определения про-боя и выявления дефекта. 1 - эелектронный луч; 2 - планарный р-п-переход; 3 - металлическая примесь; 4 - дефект. Электронная пушка обеспечивает фокусировку электрического пучка на об-разце и его сканирование. Диаметр пучка в установках с локальным оже-анализом составляет 0,07... 1 мкм. Энергия первичных электронов изменяется преде-лах 0,5... 30 кэВ. В установках оже-спектроскопии обычно в качестве энергоана-лизатора употребляется анализатор типа цилиндрического зеркала. Регистрирующее устройство с помощью двухкоординатного самописца фик-сирует зависимость , где: N - число электронов, попадающих на коллек-тор; Ек - кинетическая энергия оже-электронов. Вакуумная система установки ЭОС должна обеспечивать давление не более 107 - 108Па. При худшем вакууме остаточные газы взаимодействуют с поверх-ностью образца и искажают анализ. Из отечественных установок ЭОС следует отметить растровый оже-спекто-рометр 09 ИОС - 10 - 005 Оже-локальностью в растровом режиме 10 мкм. На (рис. 7) показан оже-спектр загрязненной поверхности GaAs из кото-рого видно, что наряду с основными спектрами GaAs, в пленке присутствуют примесные атомы S, О и С. Регистрируя значения энергий оже-электронов, эмитируемыми атомами при их возбуждении и сравнивая эти значения с табу-лированными, определяют химическую природу атомов, из которых эти элект-роны были эмитированы. Рисунок 7 - Оже-спектр загрязненной поверхности GaAs Примечание: метод получил свое название по имени французского физика Пьера Оже, который в 1925 г. открыл эффект испускания электронов атомами вещества в результате возбуждения их внут-реннего уровня рентгеновскими квантами. Эти электроны получили название оже-электронов. Эмиссионная электронная микроскопия (ЭЭМ). При специальных условиях поверхность образца может испускать электро-ны, т.е. являться катодом: при приложении сильного электрического поля к поверхности (автоэлектронная эмиссия) или под действием бомбардировки по-верхности частицами. В эмиссионном микроскопе показанном на рис. 8, поверхность образца является электродом системы, образующей с анодом электронную линзу. Применение ЭЭМ возможно для материалов, которые имеют малую работу выхода. Исследуемое изделие является как бы составной частью электронно-оптической системы ЭЭМ, и в этом его принципиальное отличие от РЭМ. ЭЭМ используют для визуализации микрополей. Если р-п-переход (1) (рис. 9) поместить в однородное электрическое поле (2) и подать на него запираю-щее напряжение, то поле, создаваемое р-п-переходом (3) (при больших токах утечки), будет искривлять линии основного поля. Искривление линий позволяет определить распределение потенциала по по-верхности образца. Электронно-отражательная спектроскопия (ЭОС). В ЭОС поверхность наблюдаемого образца поддерживается при таком потен-циале, что все или большая часть облучающих электронов не попадают на по-верхность образца. Принцип его работы показан на рис. 10. Коллимированный электронный луч направлен на поверхность образца перпендикулярно к ней. Электроны, Рисунок 8 - Принцип работы эмиссионного микроскопа Рисунок 9 - Визуализация p-n-перехода с помощью ЭЭМ - p-n-переход, включенный в обратном направлении;- электронные траектории поля р-п-перехода. Пролетевшие через последнюю апертуру линз, быстро замедляются и поворачи-ваются обратно в точке, определяемой потенциалом поверхности образца отно-сительно катода и напряженностью электрического поля на поверхности образ-ца. После поворота электроны вновь ускоряются, пролетая обратно через лин-зы, и увеличенное изображение проецируется на катодолюминесцентный эк-ран. Дополнительное увеличение можно получить, отделяя выходящий пучок от входящего в слабом магнитном поле и используя дополнительные увеличитель-ные линзы на пути выходящего пучка. Контрастность в выходящем пучке определяется топологией поверхности и изменениями электрического потенциала и магнитных полей на ней. Напряжение на образце Рисунок 10 - Принцип работы электронного отражательного микроскопа ЛИТЕРАТУРА 1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. - М.: Высш. школа., 2001 - 335 с 2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 - 272 с. 3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 - 567 с 4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007 5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств - Техносфера, 2005. - 504с. |
|
© 2007 |
|